Log in

Inhibition of Photodegradation Processes by Additive of Fluorinated Carbon Nanotubes into the Active Layer of Organic Photovoltaic Cells

  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The composites based on a semiconducting polymer and a modified fullerene were deposited as active layers of organic photovoltaic cells (OPCs). Fluorinated carbon nanotubes were added into the composite according to the procedure described previously [Kobeleva, E.S. et al., Fuller. Nanotub. 31, 464 (2023)]. The admixture inhibited photodegradation processes within OPC samples. This phenomenon is due to several reasons, in particular, the fixation of the optimal nanostructure of the bulk polymer : fullerene heterojunction and inhibition of the processes of morphological degradation of the active layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Yan, L. and Ma, C.Q., Energy Technol., 2021, vol. 9, no. 4, p. 2000920.

    Article  CAS  Google Scholar 

  2. Park, S., Kim, T., Yoon, S., et al., Adv. Mater., 2020, vol. 32, no. 51, p. 2002217.

    Article  CAS  Google Scholar 

  3. Rafique, S., Abdullah, S.M., Badiei, N., et al., Org. Electron., 2020, vol. 76, p. 105456.

    Article  CAS  Google Scholar 

  4. Duan, L. and Uddin, A., Adv. Sci., 2020, vol. 7, no. 11, p. 1903259.

    Article  CAS  Google Scholar 

  5. Lee, H., Park, C., Sin, D.H., et al., Adv. Mater., 2018, vol. 30, no. 34, p. 1800453.

    Article  Google Scholar 

  6. Ciammaruchi, L., Oliveira, R., Charas, A., et al., J. Mater. Res., 2018, vol. 33, no. 13, p. 1909.

    Article  ADS  CAS  Google Scholar 

  7. Yamilova, O.R., Martynov, I.V., Brandvold, A.S., et al., Adv. Energy Mater., 2020, vol. 10, no. 7, p. 1903163.

    Article  CAS  Google Scholar 

  8. Luke, J., Correa, L., Rodrigues, J., et al., Adv. Energy Mater., 2021, vol. 11, no. 9, p. 2003405.

    Article  CAS  Google Scholar 

  9. Ma, Y.F., Zhang, Y., and Zhang, H.L., J. Mater. Chem. C, 2022, vol. 10, no. 7, p. 2364.

    Article  CAS  Google Scholar 

  10. Salim, T., Lee, H.-W., Wong, L.H., et al., Adv. Funct. Mater., 2016, vol. 26, no. 1, p. 51.

    Article  CAS  Google Scholar 

  11. Wei, X., Li, S., Wang, W., et al., Adv. Sci., 2022, vol. 9, p. 2200054.

    Article  CAS  Google Scholar 

  12. Chen, Y. and Yang, H., ACS Centr. Sci., 2022, vol. 8, no. 11, p. 14960.

    Google Scholar 

  13. Kanungo, M., Lu, H., Malliaras, G.G., et al., Science, 2009, vol. 323, no. 5911, p. 234.

    Article  CAS  PubMed  Google Scholar 

  14. Kobeleva, E.S., Uvarov, M.N., Kravets, N.V., et al., Fuller. Nanotub., 2023, vol. 31, no. 5, p. 464.

    Article  CAS  Google Scholar 

  15. Premkumar, T., Mezzenga, R., and Geckeler, K.E., Small, 2012, vol. 8, no. 9, p. 1299.

    Article  CAS  PubMed  Google Scholar 

  16. Solak, E.K. and Irmak, E., RSC Adv., 2023, vol. 13, no. 18, p. 12244.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, Z., Ho, C.K., Shahid, A.R., et al., Sci. Rep., 2015, vol. 5, no. 1, p. 15149.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kam, Z., Wang, X., Zhang, J., et al., ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 3, p. 1608.

    Article  CAS  PubMed  Google Scholar 

  19. Manor, A., Katz, E.A., Tromholt, T., et al., Adv. Energy Mater., 2011, vol. 1, no. 5, p. 836.

    Article  CAS  Google Scholar 

  20. Qi, B. and Wang, J., Phys. Chem. Chem. Phys., 2013, vol. 15, no. 23, p. 8972

    Article  CAS  PubMed  Google Scholar 

  21. Saive, R., IEEE J. Photovoltaics, 2019, vol. 9, no. 6, p. 1477.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are thankful to Multi-Access Chemical Service Center SB RAS for carrying out spectral and analytical measurements, the Center for Collective Use “Nanostructures” of the Institute of Semiconductor Physics SB RAS, and the Core Facilities “VTAN” Novosibirsk State University for providing the equipment for deposition of functional OPC layers.

Funding

The study was supported by the Russian Science Foundation, project no. 23-73-00072. https://rscf.ru/project/23-73-00072/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Uvarov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravets, N.V., Nevostruev, D.A., Kobeleva, E.S. et al. Inhibition of Photodegradation Processes by Additive of Fluorinated Carbon Nanotubes into the Active Layer of Organic Photovoltaic Cells. High Energy Chem 57 (Suppl 3), S426–S432 (2023). https://doi.org/10.1134/S0018143923090084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923090084

Keywords:

Navigation