Log in

Preparation and Characterization of Mechanically Strong Nanocomposite Latex Materials Based on Polyurethane/Graphene Oxide

  • NANOSIZED SYSTEMS AND MATERIALS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Nanocomposites based on aqueous polyurethane latex and graphene oxide have been synthesized and characterized. The structure and composition of the nanocomposites were studied using elemental analysis, optical microscopy, IR spectroscopy, DSC, and thermogravimetry. The nanocomposites showed higher thermal stability and increased mechanical strength compared to those of the original polymer. It has been established that the Young’s modulus of latex films after the introduction of 2 wt % graphene oxide increased by a factor of almost 6. In this case, the fracture stress decreased only slightly by 10–15%. The influence of the particle size of graphene oxide on the mechanical properties of the composites was found, namely: composites with larger particles of graphene oxide had a higher Young’s modulus, and their relative elongation at break decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Itapu, B.M. and Jayatissa, A.H., Chem. Sci. Int. J., 2018, vol. 23, p. 41031.

    Article  Google Scholar 

  2. Sreenivasulua, B., Ramji, B.R., and Nagaral, M., Mater. Today: Proc., 2018, vol. 5, p. 2419.

    Google Scholar 

  3. Al Faruque, M.A., Syduzzaman, M., Sarkar, J., et al., Nanomaterials, 2021, vol. 11, p. 2414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Razaq, A., Bibi, F., Zheng, X., et al., Materials, 2022, vol. 15, p. 1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Akindoyo, J.O., Beg, M.D.H., Ghazali, S., et al., RSC Adv., 2016, vol. 6, p. 114453.

    Article  CAS  Google Scholar 

  6. Tian, S., Polymers, 2020, vol. 12, p. 1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alizadegan, F., Mirabedini, S.M., Pazokifard, S., et al., Prog. Org. Coat., 2018, vol. 123, p. 350.

    Article  CAS  Google Scholar 

  8. Pokharel, P. and Lee, D.S., Chem. Eng. J., 2014, vol. 253, p. 356.

    Article  CAS  Google Scholar 

  9. Akram, N., Saeed, M., Usman, M., et al., Polymers, 2021, vol. 13, p. 444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sinh, L.H., Luong, N.D., and Seppälä, J., Plast. Rubber Compos., 2019, vol. 48, p. 466.

    Article  CAS  Google Scholar 

  11. Santamaria-Echart, A., Fernandes, I., Barreiro, F., et al., Polymers, 2021, vol. 13, p. 409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bao, L.H., Lan, Y.J., and Zhang, S.F., J. Polym. Res., 2006, vol. 13, p. 507.

    Article  CAS  Google Scholar 

  13. Shulga, Y.M., Baskakov, S.A., Baskakova, Y.V., et al., J. Power Sources, 2015, vol. 79, p. 722.

    Article  Google Scholar 

  14. Si, Y. and Samulski, E.T., Nano Lett., 2008, vol. 8, p. 1679.

    Article  CAS  PubMed  Google Scholar 

  15. Jeong, H.K., Lee, Y.P., **, M.H., et al., Chem. Phys. Lett., 2009, vol. 470, p. 255.

    Article  CAS  Google Scholar 

  16. Cote, L.J., Cruz-Silva, R., and Huang, J., J. Am. Chem. Soc., 2009, vol. 131, p. 11027.

    Article  CAS  PubMed  Google Scholar 

  17. Karthika, P., Rajalakshmi, N., and Dhathathreyan, K.S., Soft Nanosci. Lett., 2012, vol. 2, p. 59.

    Article  CAS  Google Scholar 

  18. Fu, M., Jiao, Q., Zhao, Y., and Li, H., J. Mater. Chem. A, 2014, vol. 2, p. 735.

    Article  CAS  Google Scholar 

  19. Strankowski, M., Włodarczyk, D., Piszczyk, Ł., and Strankowska, J., J. Spectrosc., 2016, vol. 2016, p. 7520741.

    Article  Google Scholar 

  20. Wu, G., Xu, X., He, X., et al., Polymers, 2018, vol. 10, p. 133.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu, X., Xu, K., Liu, H., et al., Prog. Org. Coat., 2011, vol. 72, p. 612.

    Article  CAS  Google Scholar 

  22. Yu, D., Wang, L., and Sun, B., Fibers Polym., 2014, vol. 15, p. 208.

    Article  CAS  Google Scholar 

  23. Lu, Y., **a, Y., and Larock, R.C., Prog. Org. Coat., 2011, vol. 71, p. 336.

    Article  CAS  Google Scholar 

  24. Tian, C., Zhou, Q., Li, C.L., et al., J. Appl. Polym. Sci., 2012, vol. 124, p. 5229.

    CAS  Google Scholar 

  25. Spasevska, D., Daniloska, V., Leal, G.P., et al., RSC Adv., 2014, vol. 4, p. 24477.

    Article  CAS  Google Scholar 

  26. Lia, H., Yuan, D., Lia, P., et al., Compos., Part A: Appl. Sci. Manuf., 2019, vol. 121, p. 411.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of state contracts (state registration nos. АААА-А19-119032690060-9 and 122040500074-1). S.A.B. acknowledges the support of the Russian Science Foundation (project no. 22-13-00410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Vasilets.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskakov, S.A., Baskakova, Y.V., Dvoretskaya, E.V. et al. Preparation and Characterization of Mechanically Strong Nanocomposite Latex Materials Based on Polyurethane/Graphene Oxide. High Energy Chem 57, 217–223 (2023). https://doi.org/10.1134/S0018143923020042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923020042

Keywords:

Navigation