Log in

Structural Reconstruction of the Oligo–Early Miocene Basins of the Eastern Segment of Maghrebian Belt (Northern Tunisia): Influence of Subduction of the Fore-Arc Curvature

  • Published:
Geotectonics Aims and scope

Abstract

Based on the field observations and tectono-sedimentary analysis, we suggest reconstruction of the geological evolution from case study of Northern Tunisia since the Eocene age. The reconstruction of the structural architecture of this region can be aided by knowing the spatiotemporal occurrence and the deformation of the Oligo‒Early Miocene deposits. In the research area, two depositional basin types that coexisted but in different tectonic settings were seen in the reconstruction of Oligo‒Early Miocene successions. In Northern Tunisia, the Late Eocene shortening episode led to a thin-skinned deformation that produced irregular basement topography. During the Oligo‒Early Miocene subduction process, the earliest lithofacies of the Maghrebian Numidian flysch deposited in deep marine offshore environment. Synchronously in the onshore, the second lithofacies of Fortuna were deposited in NW-trending extensional structures after a rifting episode that characterized north-eastern Tunisia (ante-nappes). During the Middle Miocene, the curving fore-arc of subduction between Africa and the Mesomediterranean Microplate dominated northern Tunisia. As a result, the Numidian basin was raised, resulting in thrust sheets in northwestern part of Tunisia, while the extensional structures supporting the Fortuna succession were closed and created push-up structures following transpressional deformation along the NW‒SE boundary faults. Continental collision has occurred in northern Tunisia since the Late Miocene, resulting in shortening structures, some elevated areas, and sedimentary gaps encompassing a substantial portion of the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. R. Azizi, A. Kadri, and L. Chihi, “Neogene tectonic evolution in Northern Tunisia: Case of Chaouat-Mannouba area. Palaeoseismic event associated,” Arab. J. Geosci. 8, 8911–8925 (2015).

    Article  Google Scholar 

  2. F. J. Alcalá, F. Guerrera, M. Martín-Martín, G. Raffaelli, and F. Serrano, “Geodynamic implications derived from Numidian-like distal turbidites deposited along the internal-external domain boundary of the Betic Cordillera (S, Spain),” Terra Nova 25, 119–129 (2013). https://doi.org/10.1016/j.crte.2005.11.00510.1111/ter.2013.25.issue-2

  3. N. Benaouali-Mebarek, D. Frizon de Lamotte, E. Roca, R. Barcène, R. Faure, J.L. Sassi, and F. Roure, “Post-Cretaceous kinematics of the atlas and tell systems in Central Algeria: Early foreland folding and subduction related deformation,” C. R. Geosci. 338 (1–2), 115–125 (2006). https://doi.org/10.1016/j.crte.2005.11.005

    Article  Google Scholar 

  4. M. M. Ben Slama, A. Masrouhi, M. Ghanmi, and F. Zargouni, “Albian extrusion evidences of Triassic salt and clues of beginning of the Eocene Atlassic phase from the example of the Chitana Ed Djebs structure (Northern Tunisia): Implication in the North African Tethyan margin recorded events and comparisons,” C.R. Geosci. 7, 547‒556 (2009).

    Article  Google Scholar 

  5. H. Bejaoui, T. Aïfa, F. Melki, and F. Zargouni, “Structural evolution of Cenozoic basins in Northeastern Tunisia in response to sinistral strike-slip movement on the El Alia-Teboursouk fault,” J. Afr. Earth Sci. 134, 174–197 (2017).

    Article  Google Scholar 

  6. H. Belayouni, F. Guerrera, and M. Martín-Martin, “Paleogeographic and geodynamic Miocene evolution of the Tunisian Tell (Numidian and Post-Numidian successions): Bearing with the Maghrebian Chain,” Int. J. Earth. Sci. (Geol. Rundsch.) 102, 831–855 (2013). https://doi.org/10.1007/s00531-012-0824-x

    Article  Google Scholar 

  7. A. Biely and J. Salaj, “L’Oligo-Miocène du Béjaoua oriental (Tunisie septentrionale),” Notes Serv. Geol. Tunis 34, 71–107 (1971).

    Google Scholar 

  8. G. Booth-Rea, S. Gaidi, F. Melki, W. Marzougui, J. M. Azañón, F. Zargouni, J. P. Galvé, and J. V. Pérez-Peña, “Late Miocene extensional collapse of northern Tunisia,” Tectonics 37, 1626–1647 (2018).

    Article  Google Scholar 

  9. J. P. Bouillin, “Lebassin maghrébin”: Une ancienne limite entre l’Europe et l’Afrique à l’ouest des Alpes,” Bull. Soc. Géol. France 2, 547–558 (1989). https://doi.org/10.2113/gssgfbull.II.4.547

    Article  Google Scholar 

  10. K. Boukhalfa, M. Soussi, E. Ozcan, S. Banerjee, and A. Tounekti, “The Oligo–Miocene siliciclastic foreland basin deposits of northern Tunisia: Stratigraphy, sedimentology and paleogeography,” J. Afr. Earth. Sci. 170, 103932 (2020). https://doi.org/10.1016/j.jafrearsci.2020.103932

    Article  Google Scholar 

  11. B. Bouyahiaoui, F. Sage, A. Abtout, F. Klingelhoefer, K. Yelles-Chaouche, P. Schnuerle, A. Marok, J. Deverchere, M. Arab, A. Galve, and J. Y. Collot, “Crustal structure of the eastern Algerian continental margin and adjacent deep basin: Implications for Late Cenozoic geodynamic evolution of the western Mediterranean,” Geophys. J. Int. 201 (3), 1912–1938 (2015). https://doi.org/10.1093/gji/ggv102

    Article  Google Scholar 

  12. R. Bracène and D. Frizon de Lamotte, “The origin of intraplate deformation in the Atlas system of western and central Algeria: From Jurassic rifting to Cenozoic‒Quaternary inversion,” Tectonophysics 357, 207– 327.https://doi.org/10.1016/S0040-195100369-4(2002)

  13. E. Calais, C. DeMets, and J. M. Nocquet, “Evidence for a post-3.16-Ma change in Nubia–Eurasia–North American plate motions, ” Earth Planet. Sci. Lett. 216 (1–2), 81–92 (2003). https://doi.org/10.1016/S0012-821X(03)00482-5

    Article  CAS  Google Scholar 

  14. E. Carey and B. Brunier, “Analyse théorique et numérique d’un modèle mécanique élémentaire appliqué à l'étude d’une population de failles,” C. R. Acad. Sci. Paris. 179, 891–894 (1974).

    Google Scholar 

  15. E. Carminati and C. Doglioni, “Alps vs. Apennines: The paradigm of a tectonically asymmetric Earth,” Earth Sci. Rev. 112, 67–96 (2012). https://doi.org/10.1016/j.earscirev.2012.02.004

    Article  Google Scholar 

  16. L. Chihi and H. Philip, “Les fossés de l’extrémité orientale du Maghreb (Tunisie et Algérie orientale): Tectonique Mio-Plio-Quaternaire et implication dans l’évolution géodynamique récente de la Méditerranée occidentale,” Notes. Serv. Geol., Tunis 64, 103‒116 (1998).

  17. C. Doglioni, “Main differences between thrust belts,” Terra Nova 4, 152–164 (1992).https://doi.org/10.1111/ter.(1992).4.issue-2

  18. C. Doglioni, M. Fernandez, E. Gueguen, and F. Sabat, “On the interference between the early Apennines–Maghrebides back-arc extension and the Alps-Betics orogen in the Neogene geodynamics of the Western Mediterranean,” Bull. Soc. Geol. Ital. 118, 75–89 (1999).

    Google Scholar 

  19. H. El Euch, M. Saidi, L. Fourati, and C. El Maherssi, “Northern Tunisia thrust belt: deformation models and hydrocarbon system,” in Proceedings of 1st EAGE North African/Mediterranean Petroleum & Geosciences Conference & Exhibition, Ser. 1 (Tunis, 2004), pp. 370–390.

  20. A. El Ghali, N. Ben Ayed, C. Bobier, F. Zargouni, and A. Krima, “Les manifestations Tectoniques synsédimentaires associées à la compression éocène en Tunisie: Implications paleogeographiques et structurales sur la marge Nord-Africaine,” C. R. Geosci. 335 (9), 763–771 (2003).

    Article  Google Scholar 

  21. E. M. Essid, A. Kadri, M. H. Inoubli, and F. Zargouni, “Identification of new NE- trending deep-seated faults and tectonic pattern updating in northern Tunisia (MogodoseBizerte region), insights from field and seismic reflection data,” Tectonophysics 682 (6), 249‒263 (2016). https://doi.org/10.1016/j.tecto.2016.05.032

    Article  Google Scholar 

  22. E. M. Essid, A. Kadri, H. Balti, M. Gasmi, and F. Zargouni, “Contributions of gravity and 737 field data on the structural scheme updating of the Tellian domain and its foreland (Nefza‒Bizerte region, Northern Tunisia),” Int. J. Earth. Sci. 107, 2357–2381 (2018).

    Article  CAS  Google Scholar 

  23. B. Gelabert, F. Sabat, and A. Rodriguez-Perea, “A new proposal for the late Cenozoic geodynamic evolution of the Western Mediterranean,” Terra Nova 14 (2), 93–100 (2002).

    Article  Google Scholar 

  24. E. Gueguen, C. Doglioni, and M. Fernandez, “On the post-25 Ma geodynamic evolution of the western Mediterranean,” Tectonophysics 298 (1), 259–269 (1998).

    Article  Google Scholar 

  25. F. Guerrera, A. Martin-Algarra, and V. Perrone, “Late Oligocene-Miocene syn-/-late-orogenic successions in Western and Central Mediterranean chains from the Betic Cordillera to the Southern Apennines,” Terra Nova 5, 525–544 (1993). https://doi.org/10.1111/ter.1993.5.issue-6

    Article  Google Scholar 

  26. F. Guerrera, M. Martín-Martín, V. Perrone, and M. Tramontana, “Tectono-sedimentary evolution of the southern branch of the Western Tethys (Maghrebian Flysch Basin and Lucanian Ocean),” Terra Nova 17, 358–367 (2005). https://doi.org/10.1111/j.1365-3121.2005.00621.x

    Article  Google Scholar 

  27. F. Guerrera, A. Martin-Algarra, and M. Martin-Martin, “Tectono-sedimentary evolution of the “Numidian Formation” and Lateral Facies (southern branch of the Western Tethys): Constraints for central-western Mediterranean geodynamics,” Terra Nova 24, 34–41 (2012).

    Article  Google Scholar 

  28. F. Guerrera, M. Martin-Martin, “Geodynamic events reconstructed in the Betic, Maghrebian, and Apennine Chains (Central-Western Tethys),” Bull. Soc. Geol. France 185, 329–341 (2014).

    Article  Google Scholar 

  29. F. Guerrera, M. Martin-Martin, and M. Tramontana, “Evolutionary geological models of the central-western peri-Mediterranean chains: A review,” Int. Geol. Rev. (2019). https://doi.org/10.1080/00206814.2019.1706056

  30. C. Faccenna, T. W. Becker, P. F. Lucente, L. Jolivet, and F. Rossetti, “History of subduction and back-arc extension in the Central Mediterranean,” Geophys. J. Int. 145, 809–820 (2001).

    Article  Google Scholar 

  31. C. Faccenna, F. Funiciello, L. Civetta, M. D’Antonio, M. Moroni, and C. Piromallo, “Slab disruption, mantle circulation, and the opening of the Tyrrhenian basins,” in Cenozoic Volcanism in the Mediterranean Area, Ed. by L. Beccaluva, G. Bianchini, and M. Wilson (Washington, D.C., USA, AGU, GSA Spec. Pap., 2007, Vol. 41), pp. 153‒169. https://doi.org/10.1130/2007.2418(08)

  32. D. Frizon de Lamotte, B. Saint Bezar, R. Bracène, and E. Mercier, “The two main steps of the Atlas building and geodynamics of the western Mediterranean,” Tectonics 19, 740–761 (2000). https://doi.org/10.1029/2000TC900003

    Article  Google Scholar 

  33. D. Frizon de Lamotte, P. Leturmy, Y. Missenard, S. Khomsi, G. Ruiz, O. Saddiqi, F. Guillocheau, and A. Michard, “Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): An overview,” Tectonophysics 475, 9–28 (2009).

    Article  Google Scholar 

  34. D. Frizon de Lamotte, C. Raulin, N. Mouchot, J. C. Wrobel-Daveau, C. Blanpied, and J. C. Ringenbach, “The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes,” Tectonics 30 (3), 1‒22 (2011).

    Article  Google Scholar 

  35. M. R. Handy, S. Schmid, R. Bousquet, E. Kissling, and D. Bernoulli, “Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps,” Earth. Sci. Rev. 102, 121–158 (2010).https://doi.org/10.1016/j.earscirev.2010.06.002

  36. B. Hoyez, Le Numidien et les Flyschs Oligo-Miocènes de la Bordure sud de la Méditerranée occidentale, Thèse d’Éta (Univ. Lille, France, 1989).

  37. L. Jolivet and C. Faccenna, “Mediterranean extension and the Africa-Eurasia collision,” Tectonics 19, 1095–1106 (2000). https://doi.org/10.1029/2000TC900018

    Article  Google Scholar 

  38. S. Khomsi, M. Bedir, M. Soussi, M. G. B. Jemia, and K. B. Ismail-Lattrache, “Mise en_evidence en subsurface d'événements compressifs Eocène moyenne supérieur en Tunisie orientale (Sahel): Généralité de la phase atlasique en Afrique du Nord,” C. R. Acad. Sci. Paris 338 (1), 41–49 (2006).

    Google Scholar 

  39. S. Khomsi, M. Soussi, Ch. Mahersi, M. Bédir, H. F. Ben Jemia, S. Riahi, and K. Boukhalfa, “New insights on the structural style of the subsurface of the Tell units in north-western Tunisia issued from seismic imaging: Geodynamic implications,” C. R. Geosci. 34, 347–356 (2009).

    Article  Google Scholar 

  40. F. La Manna, M. Grasso, M. Romeo, R. Maniscalco, and A. di Stefano, “Evoluzione tettonico-sedimentaria Neogenica del bordo Tirrenico del Monti Nebrodi (Sicilia settentrionale),” Studi. Geol. Camerti 2, 293–305 (1995).

    Google Scholar 

  41. A. Leprêtre, F. Klingelhoefer, D. Graindorge, P. Schnurle, M.-O. Beslier, and K. Yelles, “Multiphased tectonic evolution of the Central Algerian margin from combined wide-angle and reflection seismic data off Tipaza, Algeria,” Geophys. J. 118 (8), 3899–3916 (2013).

    Google Scholar 

  42. R. Leprêtre, D. Frizon de Lamotte, V. Combier, O. Gimeno-Vives, G. Mohn, and R. Eschard, “The Tell-Rif orogenic system (Morocco, Algeria, Tunisia) and the structural heritage of the southern Tethys margin,” BSGF-Earth Sci. Bull. 189 (2), 10 (2018). https://doi.org/10.1051/bsgf/2018009

    Article  Google Scholar 

  43. Y. Mahdjoub and O. Merle, “Cinématique des déformations tertiaires dans le massif de Petite Kabylie (Algérie orientale),” Bull. Soc. Geol. France 6, 629‒634 (1990).

    Article  Google Scholar 

  44. N. Mahmoudi, F. Ferhi, Y. Houla, R. Azizi, and L. Chihi, “New insights on the tectonic evolution of the Miocene gap grabens of Sers–Siliana (Tunisian Atlas) during Neogene to Quaternary: Contribution of chronology of the regional tectonic events,” J. Earth Syst. Sci. 128 (2019). https://doi.org/10.1007/s12040-019-1220-8

  45. N. Mahmoudi, R. Azizi, O. Abidi, and N. Ghannem, “Structural evolution of the Kef and Sers grabens (Tunisian Atlas) during the Late Mesozoic–Quaternary episode: Role of inherited faults and new constraint on the collapsing mode,” J. Earth. Syst. Sci. 131, 233 (2022). https://doi.org/10.1007/s12040-022-01974-2

    Article  Google Scholar 

  46. E. Mantovani, D. Albarello, D. Babbucci, C. Tamburelli, and M. Viti, “Trench-Arc-BackArc systems in the Mediterranean area: Examples of extrusion tectonics,” J. Virtual Explor. 8, 125‒141 (2002).

    Article  Google Scholar 

  47. E. Mantovani, M. Viti, D. Babbucci, C. Tamburelli, and N. Cenni, “Geodynamics of the central-western Mediterranean region: Plausible and non-plausible driving forces,” Mar. Petrol. Geol. 113, 104–121 (2019). https://doi.org/10.1016/j.marpetgeo.2019.104121

    Article  Google Scholar 

  48. A. Masrouhi, O. Bellier, and H. Koyi, “Geometry and structural evolution of Lorbeus diapir, northwestern Tunisia: Polyphase diapirism of the North African inverted passive margin,” Int. J. Earth Sci. 103 (3), 881–900 (2014).https://doi.org/10.1007/s00531-013-0992

  49. M. Mattauer, P. Tapponnier, and F. Proust, “Sur les mécanismes de formation des chaines intracontinentales: l’exemple des chaines atlasiques du Maroc,” Bull. Soc. Geol. France 7 (3), 521–526 (1977).

    Article  Google Scholar 

  50. M. Medaouri, J. Deverchère, D. Graindorge, R. Bracene, R. Badji, A. Ouabadi, K. Yelles, and F. Bendib, “The transition from Alboran to Algerian basins (Western Mediterranean Sea): Chronostratigraphy, deep crustal structure and tectonic evolution at the rear of a narrow slab rollback system,” J. Geodynam. 77, 186–205 (2014).

    Article  Google Scholar 

  51. M. Meghraoui and F. Doumaz, “Earthquake-induced flooding and paleoseismicity of the El Asnam (Algeria) fault-related fold,” J. Geophys. Res. 101, 17 617–17 644 (1996). https://doi.org/10.1029/96JB00650

    Article  Google Scholar 

  52. M. Meghraoui and S. Pondrelli, “Active faulting and transpression tectonics along the plate boundary in North Africa,” Ann. Geophys. 55 (5), 955‒967 (2012). https://doi.org/10.4401/ag-4970

    Article  Google Scholar 

  53. F. Melki, B. Loutib, Z. Foued, and A. Rabah, “Nouvelles donnees sur l’evolution structurale de l’extremite nord-est de la Tunisie (region de Bizerte),” Afr. Sci. Rev. 6, 149‒157 (1999).

    Google Scholar 

  54. F. Melki, A. Rabah, B. Loutib, S. Tlig, and Z. Foued, The 1 : 50 000 Geological Map of Bizerte (Tunis Natl. Office of Mines, 2001).

  55. F. Melki, T. Zouaghi, S. Harrab, A. Casas Sainz, M. Bédir, and F. Zargouni, “Structuring and evolution of Neogene transcurrent basins in the Tellian foreland domain, Northeastern Tunisia,” J. Geodynam. 52 (1), 57–69 (2011).

    Article  Google Scholar 

  56. F. Melki, T. Zouaghi, M.B. Ben Chelbi, M. Bedir, and F. Zargouni, “Role of the NE‒SW Hercynian master fault systems and associated lineaments on the structuring and evolution of the Mesozoic and Cenozoic basins of the Alpine margin, Northern Tunisia,” in Tectonics—Recent Advances, Ed. by E. Sharkov (IntechOpen, 2012). https://doi.org/10.5772/50145.

  57. J. E. Meulenkamp, and W. Wim Sissingh, “Tertiary paleogeography and tectonostratigraphic evolution of the Northern and Southern peri-Tethys platforms and the intermediate domains of the African–Eurasian convergent plate boundary zone,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 196, 209–228 (2003).

    Article  Google Scholar 

  58. A. Michard, F. Negro, O. Saddiqi, M.L. Bouybaouene, A. Chalouan, R. Montigny, and B. Goff’e, “Pressure-temperature-time constraints on the Maghrebide mountain building: Evidence from the Rif-Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications,” C. R. Geosci. 338, 92–114 (2006).

    Article  Google Scholar 

  59. J. L. Morel and M. Meghraoui, “Goringe-Alboran-Tell tectonic zone: A transpression system along the Africa‒Eurasia plate boundary,” Geology 24 (8), 755–758 (1996). https://doi.org/10.1130/0091-7613(1996)024<0755:GATTZA>2.3.CO;2

    Article  Google Scholar 

  60. H. Mzali and H. Zouari, “Caractérisation géométrique et cinématique des structures liées aux phases compressives de l’Éocène au Quaternaire inférieur en Tunisie : Exemple de la Tunisie nord-orientale,” C. R. Geosci. 338, 742–749 (2006).

    Article  Google Scholar 

  61. V. Perthuisot, “Diapirism in Northern Tunisia,” J. Struct. Geol. 3, 231–235 (1981).

    Article  Google Scholar 

  62. A. Piqué, Aît Brahim, R. Ait Ouali, M. Amrhar, M. Charroud, C. Gourmelen, E. Laville, F. Rekhiss, and P. Tricart, “Evolution structurale des domaines atlasiques du Maghreb au Meso-Cenosoïque; le role des structures heritees dans la deformation du domaine atlasique de l’Afrique du Nord,” Bull. Soc. Geol. France 169, 797–810 (1998).

    Google Scholar 

  63. A. Piqué, P. Tricart, R. Guiraud, E. Laville, S. Bouaziz, M. Amrhar, and R. A. Ouali, “The Mesozoic‒Cenozoic Atlas Belt (North Africa): An overview,” Geodinam. Acta 15 (3), 185–208 (2002).

    Google Scholar 

  64. A. Ramzi and L. Chihi, “Superposed folding in the Neo- gene series of the Northeastern Tunisia: Precision of the upper Miocene compression and geodynamic significance,” Int. J. Earth Sci. 106, 1905–1918 (2017).

    Article  CAS  Google Scholar 

  65. A. Ramzi, N. Mahmoudi, L. Chihi, “Syn-collision folding and multi-layers detachment in the molassic basin, Northeastern Tunisia,” Geotectonics 54, 832–843 (2020). https://doi.org/10.1134/S0016852120060102

    Article  Google Scholar 

  66. D. Reuther, Z. Ben Avraham, and M. Grasso, “Origin and role of major strike-slip transfers during plate collision in the Central Mediterranean,” Terra Nova 5, 249‒257 (1993).

    Article  Google Scholar 

  67. S. Riahi, A. Uchman, D. Stow, M. Soussi, and K. Ben-Ismail-Lattrache, “Deep-sea trace fossils of the Oligocene–Miocene Numidian Formation, northern Tunisia,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 414, 155–177 (2014).

    Article  Google Scholar 

  68. S. Riahi, M. Soussi, and K. Ben-Ismail-Lattrache, “Age, internal stratigraphic architecture and structural style of the Oligo‒Miocene Numidian Formation of Northern Tunisia,” Ann. Soc. Geol. Pol. 85, 345–370 (2015).

    Google Scholar 

  69. S. Riahi, M. Soussi, and D. Stow, “Sedimentological and stratigraphic constraints on Oligo–Miocene deposition in the Mogod Mountains, northern Tunisia: new insights for paleogeographic evolution of North Africa passive margin,” Int. J. Earth. Sci. 110, 653–688 (2021). https://doi.org/10.1007/s00531-020-01980-z

    Article  CAS  Google Scholar 

  70. F. Roure, P. Casero, and B. Addoum, “Alpine Inversion of the North African Margin and Delamination of its Continental Lithosphere,” Tectonics 31, TC3006 (2012) https://doi.org/10.1029/2011TC002989

    Article  Google Scholar 

  71. H. Rouvier, Géologie de l’Extrême Nord-Tunisien: tectoniques et paléogéographie superposées à l’extrémité orientale de la chaîne Nord-Maghrebine, PhD Thesis (Univ. Pierre et Marie Curie, Paris, France, 1977).

  72. E. Serpelloni, G. Vannucci, S. Pondrelli, A. Argnani, G. Casula, M. Anzidei, P. Baldi, and P. Gasperini, “Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data,” Geophys. J. Int. 169 (3), 1180–1200 (2007).

    Article  Google Scholar 

  73. A. Soumaya, N. Ben Ayed, M. Rajabi, M. Meghraoui, D. Delvaux, A. Kadri, M. Ziegler, S. Maouche, and A. Braham, “Active faulting geometry and stress pattern near complex strike-slip systems along the Maghreb region: Constraints on active convergence in Western Mediterranean,” Tectonics 37, 3148–3173 (2018).https://doi.org/10.1029/2018TC004983

    Article  Google Scholar 

  74. F. Talbi, F. Melki, K. Ben Ismail-Lattrache, R. Alouani, and S. Tlig, “Le Numidien de la Tunisie septentrionale: données stratigraphiques et interpretation géodynamique,” Estudios Geologicos‒Madrid 64, 31–44 (2008).

    Google Scholar 

  75. M.F.H. Thomas, S. Bodin, and J. Redfern, “Comment on: “European provenance of the Numidian Flysch in northern Tunisia (Fildes et al. 2010),” Terra Nova 22 (6), 501–505 (2010).

    Article  CAS  Google Scholar 

  76. D. J. J. Van Hinsbergen, R. L. M. Vissers, and W. Spakman, “Origin and consequences of Western Mediterranean subduction, rollback and slab segmentation,” Tectonics 33, 393–419 (2014).

    Article  Google Scholar 

  77. F. B. Van Houten, “Mid-Cenozoic Fortuna Formation, north-eastern Tunisia: Record of late alpine activity on North African cratonic margin,” Am. J. Sci. 280, 1051–1062 (1980).

    Article  Google Scholar 

  78. P. Vernant, A. Fadil, T. Mourabit, D. Ouazar, A. Koulali, J.M. Davila, J. Garate, S. McClusky, and R. Reilinger, “Geodetic constraints on active tectonics of the Western Mediterranean: Implications for the kinematics and dynamics of the Nubia‒Eurasia plate boundary zone,” J. Geodynam. 49, 123‒129 (2010).

    Article  Google Scholar 

  79. C. Yaich, H. F. Hooyberghs, C. Duret, and M. Renard, “Corrélation stratigraphique entre les unités Oligo‒Miocènes de Tunisie centrale et le Numidien,” C. R. Acad. Sci. Paris 331, 499–506 (2000).

    CAS  Google Scholar 

  80. DTM. https://fr fr.topographic-map.com (Accessed July, 2022).

Download references

ACKNOWLEDGMENTS

The current research dedicated to the memory of untimely deceased Prof. Lassaad Chihi (University of Carthage, Bizerte, Tunisia).

Authors are thankful to Dr. V.G. Trifonov (Geological Institute RAS, Moscow, Russia) and anonymous reviewer for helpful comments. Authors extend their gratitude to Editor M.N. Shoupletsova (Geological Institute RAS, Moscow, Russia) for thorough editing.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Azizi.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, R., Mahmoudi, N., Gaieb, S. et al. Structural Reconstruction of the Oligo–Early Miocene Basins of the Eastern Segment of Maghrebian Belt (Northern Tunisia): Influence of Subduction of the Fore-Arc Curvature. Geotecton. 58, 66–89 (2024). https://doi.org/10.1134/S0016852124700055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852124700055

Keywords:

Navigation