Log in

Influence of Tectonic Factor on Porphyry Copper Deposits Localization and Distribution (Arasbaran District, NW Iran): Synthesis of Alteration Patterns and Lineaments Using Digital Techniques

  • Published:
Geotectonics Aims and scope

Abstract

The Kighal and Bormolk porphyry copper deposits (PCDs) are known subeconomic deposits and are ~10 km south of Sungun, the world-class copper mine in NW Iran. The deposits are located in the Azerbaijan plateau, within Alborz, Zagros, and Caucasus Mountain ranges, having undergone active tectonics, including uplift and thrust-folding from the Cimmerrian Orogeny. The sub-economic nature of the Kighal and Bormolk deposits, despite their relatively close distance and age and lithologic similarity to those of the Sungun deposit, has been discussed. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Landsat 8 Operational Land Imager (OLI) imagery were used to map alteration patterns and lineaments associated with these deposits. In order to discriminate alteration minerals of the deposits in comparison with those in the Sungun deposit, the ASTER image was processed using False Color Composite (FCC), Band Ratio (BR), Principal Component Analysis (PCA), Minimum Noise Fraction (MNF), and Mixture-Tuned Matched-Filtering (MTMF) techniques, which recognize seven alteration types in the Kighal‒Bormolk area and three types in the Sungun area, including its more intense alteration systems. The results were verified by field observations, mineralogical, and X-ray diffraction (XRD) studies. Also, lineament extraction of DEM and Landsat 8 OLI data by Envi 5.1, Geomatica, ArcGIS 10.6, and Rockworks 16, displayed a lower density of fault intersections in the Kighal‒Bormolk area. Additionally, NW‒SE trending lineaments of the Sungun deposit, which is in accordance with most of the valuable porphyry copper deposits in Iran, are taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. M. Abrams, S. Hook, and B. Ramachandran, ASTER User Handbook (Jet Propulsion Laboratory, Pasadena, CA, USA, 2002).

    Google Scholar 

  2. P. Afzal, A. Khakzad, P. Moarefvand, N. R. Omran, B. Esfandiari, and Y. F. Alghalandis, “Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran,” J. Geochem. Explor. 104, 34–46 (2010). https://doi.org/10.1016/j.gexplo.2009.11.003

    Article  Google Scholar 

  3. A. Aghanabati, Geological Map of the Middle East. Scale 1 : 5 000 000 (Geol. Surv. Iran, 1993).

  4. M. Ahmadfaraj, M. Mirmohammadi, and P. Afzal, “Application of fractal modeling and PCA method for hydrothermal alteration map** in the Saveh area (Central Iran) based on ASTER multispectral data,” Int. J. Min. Geo-Eng. 50, 37–48 (2016). https://doi.org/10.22059/IJMGE.2016.57307

    Article  Google Scholar 

  5. A. Alizadeh and Z. Hoseynalizadeh, “Analysis of the stress regime and tectonic evolution of the Azerbaijan Plateau, Northwestern Iran,” Geotectonics 51, 308–318 (2017). https://doi.org/10.1134/S0016852117030037

    Article  Google Scholar 

  6. Ü. Altinbaş, Y. Kurucu, M. Bolca, and A. El-Nahry, “Using advanced spectral analyses techniques as possible means of identifying clay minerals,” Turkish J. Agric. Forestry 29, 19–28 (2005).

    Google Scholar 

  7. O. Asghari, A. Hezarkhani, and F. Soltani, “The comparison of alteration zones in the Sungun porphyry copper deposit, Iran (based on fluid inclusion studies),” Acta Geol. Pol. 59, 93–109 (2009).

    Google Scholar 

  8. O. Asghari and A. Hezarkhani, “Investigations of alteration zones based on fluid inclusion microthermometry at Sungun porphyry copper deposit NW Iran,” Bull. Miner. Resour. Explor. 140, 19–34 (2010).

    Google Scholar 

  9. A. Baghbanan, Preliminary exploration of Bormolk PCD, Ahar, MSc Diss. (Amirkabir Univ., Tehran, Iran, 1996).

  10. M. Berberian, “Seismotectonics of the Mediterranean region and the Caucasus,” in Historical and Prehistorical Earthquakes in the Caucasus, Ed. by D. Giardini and S. Balassanian (Kluwer Acad. Publ., Dordrecht, Netherlands, 1997) pp. 233–311.

    Google Scholar 

  11. B. R. Berger and R. Henley, “Advances in the understanding of epithermal gold-silver deposits, with special reference to the western United States,” Econ. Geol. Monogr. 6, 405–423 (1989).

    Google Scholar 

  12. F. P. Bierlein, F. C. Murphy, R. F. Weinberg, and T. Lees, “Distribution of orogenic gold deposits in relation to fault zones and gravity gradients: Targeting tools applied to the Eastern Goldfields, Yilgarn Craton, Western Australia,” Miner. Deposita 41, 107–126 (2006). https://doi.org/10.1007/s00126-005-0044-4

    Article  Google Scholar 

  13. J. R. Bonham and F. Harold, “Models for volcanic-hosted epithermal precious metal deposits: A review,” in Proceedings of the International Volcanological CongressVolcanism, Hydrothermal Systems and Related Mineralization” (Hamilton, New Zealand, 1986), pp. 13–17.

  14. D. Burt, “Hydrothermal alteration,” in Geochemistry of Hydrothermal Ore Deposits, Ed. by H. L. Barnes (John Wiley, N.Y., USA, 1979), pp. 173–235.

    Google Scholar 

  15. C. J. Chernicoff, J. P. Richards, and E. O. Zappettini, “Crustal lineament control on magmatism and mineralization in northwestern Argentina: Geological, geophysical, and remote sensing evidence,” Ore Geol. Rev. 21, 127–155 (2002). https://doi.org/10.1016/S0169-1368(02)00087-2

    Article  Google Scholar 

  16. R. N. Clark, T. V. King, M. Klejwa, G. A. Swayze, and N. Vergo, “High spectral resolution reflectance spectroscopy of minerals,” J. Geophys. Res.: Solid Earth 95, 12653–12680 (1990). https://doi.org/10.1029/JB095iB08p12653

    Article  Google Scholar 

  17. R. N. Clark, G. A. Swayze, A. J. Gallagher, T. V. King, and W. M. Calvin, Digital Spectral Library: Vers. 1 (0.2 to 3.0 µm) (U.S. Geol. Surv., 1993), Open File Rep. 93-592.

  18. R. E. Crippen, R. G. Blom, and J. R. Heyada, “Directed band ratioing for the retention of perceptually-independent topographic expression in chromaticity-enhanced imagery,” Remote Sens. 9, 749–765 (1988). https://doi.org/10.1080/01431168808954890

    Article  Google Scholar 

  19. A. P. Crosta and J. Moore, “Enhancement of Landsat Thematic Mapper imagery for residual soil map** in SW Minas Gerais State, Brazil—A prospecting case history in greenstone belt terrain,” in Thematic Conference on Remote Sensing for Exploration Geology “Methods, Integration, Solutions” (Calgary, Canada, 1990), pp. 1173–1187.

  20. J. K. Crowley and N. Vergo, “Near-infra-red reflectance spectra of mixtures of kaolin-group minerals: Use in clay mineral studies,” Clays Clay Miner. 36, 310–316 (1988). https://doi.org/10.1346/CCMN.1988.0360404

    Article  Google Scholar 

  21. I. D. Tommaso and N. Rubinstein, “Hydrothermal alteration map** using ASTER data in the Infiernillo porphyry deposit, Argentina,” Ore Geol. Rev. 32, 275–290 (2007). https://doi.org/10.1016/j.oregeorev.2006.05.004

    Article  Google Scholar 

  22. S. S. Egan, J. Mosar, M. F. Brunet, and T. Kangarli, “Subsidence and uplift mechanisms within the South Caspian Basin: Insights from the onshore and offshore Azerbaijan region,” Spec. Publ.—Geol. Soc. London 312, 219–240 (2009). https://doi.org/10.1144/SP312.11

    Article  Google Scholar 

  23. M. Essalhi, S. Sizaret, L. Barbanson, Y. Chen, F. Lagroix, F. Demory, J. M. Nieto, R. Saez, and M. A. Capitan, “A case study of the internal structures of gossans and weathering processes in the Iberian Pyrite Belt using magnetic fabrics and paleomagnetic dating,” Miner. Deposita 46, 981–999 (2011). https://doi.org/10.1007/s00126-011-0361-8

    Article  Google Scholar 

  24. Q. Feng and B. He, “Map** of the hydrothermal mineral alteration zones using ASTER data,” in Geoscience and Remote Sensing Symposium (IGARSS) (IEEE Int., 2016), pp. 802–805. https://doi.org/10.1109/IGARSS.2016.7729202

  25. G. Ferrier, J. Naden, A. Ganas, S. Kemp, and R. Pope, “Identification of multi-style hydrothermal alteration using integrated compositional and topographic remote sensing datasets,” Geoscience 6, 36–52 (2016). https://doi.org/10.3390/geosciences6030036

    Article  Google Scholar 

  26. T. François, E. Burov, P. Agard, and B. Meyer, “Buildup of a dynamically supported orogenic plateau: numerical modeling of the Zagros/Central Iran case study,” Geochem., Geophys., Geosyst. 15, 2632–2654 (2014). https://doi.org/10.1002/2013GC005223

    Article  Google Scholar 

  27. V. J. S. Grauch, B. D. Rodriguez, and V. Bankley, “Evidence for a Battle Mountain–Eureka crustal fault zone, north-central Nevada, and its relation to Neoproterozoic–Early Paleozoic continental breakup,” J. Geophys. Res. 108, 2140–2155 (2003).

    Article  Google Scholar 

  28. A. Green, M. Berman, P. Switzer, and M. D. Craig, “A transformation for ordering multispectral data in terms of image quality with implications for noise removal,” IEEE Trans. Geosci. Remote Sens. 26, 65–74 (1988). https://doi.org/10.1109/36.3001

    Article  Google Scholar 

  29. D. I. Groves and F. P. Bierlein, “Geodynamic settings of mineral deposit systems,” J. Geol. Soc. 164, 19–30 (2007). https://doi.org/10.1144/0016-76492006-065

    Article  Google Scholar 

  30. Sh. Hassanpour, Metallogeny and mineralization of Cu–Au in Arasbaran Zone, NW of Iran, PhD Diss. (Shahid Beheshti Univ., Tehran, Iran, 2010).

  31. Sh. Hassanpour, S. Alirezaei, D. Selby, and S. Sergeev, “SHRIMP zircon U–Pb and biotite and hornblende Ar–Ar geochronology of Sungun, Haftcheshmeh, Kighal, and Niaz porphyry Cu–Mo systems: Evidence for an early Miocene porphyry-style mineralization in northwest Iran,” Int. J. Earth Sci. 104 (1), 45–59 (2015). https://doi.org/10.1007/s00531-014-1071-0

    Article  Google Scholar 

  32. J. Hassanzadeh, Metallogenic and tectonomagmatic events in the SE sector of the Cenozoic active continental margin of central Iran (Shahr e Babak area, Kerman Province), PhD Diss. (UCLA, Los Angeles CA, USA, 1993).

  33. D. Hatzfeld and P. Molnar, “Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications,” Rev. Geophys. 48, RG2005 (2010). https://doi.org/10.1029/2009RG000304

    Article  Google Scholar 

  34. A. Hezarkhani and A. E. Williams-Jones, “Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran; evidence from fluid inclusions and stable isotopes,” Econom. Geol. 93, 651–670 (1998). https://doi.org/10.2113/gsecongeo.93.5.651

    Article  Google Scholar 

  35. A. Hezarkhani, “Petrology of the intrusive rocks within the Sungun porphyry copper deposit, Azerbaijan, Iran,” J. Asian Earth Sci. 27, 326–340 (2006). https://doi.org/10.1016/j.jseaes.2005.04.005

    Article  Google Scholar 

  36. L. Q. Hung, O. Batelaan, and F. De Smedt, “Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery, Case study: Suoimuoi Tropical Karst Catchment, Vietnam,” in Proceedings of SPIE: Remote Sensing for Environmental Monitoring, GIS Applications, and Geology for International Society for Optics and Photonics, 2005, Vol. 5983. https://doi.org/10.1117/12.627699

  37. G. R. Hunt, “Spectral signatures of particulate minerals in the visible and near infrared,” Geophysics, 42, 501–513 (1977). https://doi.org/10.1190/1.1440721

    Article  Google Scholar 

  38. G. R. Hunt and R. P. Ashley, “Spectra of altered rocks in the visible and near infrared,” Econ. Geol. 74, 1613–1629 (1979). https://doi.org/10.2113/gsecongeo.74.7.1613

    Article  Google Scholar 

  39. H. Jamali, Y. Dilek, F. Daliran, A. Yaghubpur, and B. Mehrabi, “Metallogeny and tectonic evolution of the Cenozoic Ahar–Arasbaran volcanic belt, northern Iran,” Int. Geol. Rev. 52, 608–630 (2010). https://doi.org/10.1080/00206810903416323

    Article  Google Scholar 

  40. H. Jamali and B. Mehrabi, “Relationships between arc maturity and Cu–Mo–Au porphyry and related epithermal mineralization at the Cenozoic Arasbaran magmatic belt,” Ore Geol. Rev. 16, 155–170 (2014). https://doi.org/10.1016/j.oregeorev.2014.06.017

    Article  Google Scholar 

  41. L. Jaques, S. Jaireth, and J. L. Walshe, “Mineral systems of Australia: an overview of resources, settings and processes,” Aust. J. Earth Sci. 49, 623–660 (2002). https://doi.org/10.1046/j.1440-0952.2002.00946.x

    Article  Google Scholar 

  42. D. John, R. Ayuso, M. Barton, R. Blakely, R. J. Bodnar, J. H. Dilles, F. Gray, F. T. Graybeal, J. L. Mars, D. K. McPhee, R. R. Seal, and R. D. Taylor, “Porphyry copper deposit model,” in Mineral Deposit Models for Resource Assessment (USGS SI Rep., 2010. Ch. B).

    Google Scholar 

  43. M. H. Karimpour, N. Mazhari, and A. M. Shafaroudi, “Discrimination of different erosion levels of porphyry Cu deposits using ASTER image processing in eastern Iran: A case study in the Maherabad, Shadan, and Chah Shaljami areas,” Acta Geol. Sin. 88, 1195–1213 (2014) [in English]. https://doi.org/10.1111/1755-6724.12283

  44. R. Kerrich, R. J. Goldfarb, and J. P. Richards, “Metallogenic provinces in an evolving geodynamic framework,” in Econ. Geol. 100th Anniversary Volume, Ed. by J. W. Hedenquist, J. F. H. Thompson, and R. J. Goldfarb (Soc. Econ. Geol., Littleton, Colorado, 2005), pp. 1097–1136.

    Google Scholar 

  45. Q. Li, B. Zhang, L. Lu, and Q. Lin, “Hydrothermal alteration map** using ASTER data in Baogutu porphyry deposit, China,” in Earth and Environmental Science (IOP Conf. Ser. IOP Publ., 2014), pp. 012174. https://doi.org/10.1088/1755-1315/17/1/012174

  46. Y. C. Lin, S. L. Chung, A. F. Bingöl, L. Yang, A. Okrostsvaridze, K. N. Pang, H. Y. Lee, and T. H. Lin, “Diachronous initiation of post-collisional magmatism in the Arabia–Eurasia collision zone,” Lithos 356, 105394 (2020).

    Article  Google Scholar 

  47. W. Loughlin, “Principal component analysis for alteration map**,” Photogramm. Eng. Remote Sens. 57, 1163–1169 (1991).

    Google Scholar 

  48. J. D. Lowell and J. M. Guilbert, “Lateral and vertical alteration-mineralization zoning in porphyry ore deposits,” Econ. Geol. 65, 373–408 (1970). https://doi.org/10.2113/gsecongeo.65.4.373

    Article  Google Scholar 

  49. M. Maanijou, T. Ramezani, “The main effective factors on mineralization of Sonajil porphyry—epithermal copper-gold deposit using remote sensing mineralogical and geochemical studies,” Iran. J. Geol. 48(12), 63‒79 (2019).

  50. M.Maanijou, T. Rasa, and D. Lentz, “Petrology, geochemistry and stable isotope studies of the Chehelkureh Cu—Zn—Pb deposit, Zahedan,” J. Econ. Geol. 107 (4), 683‒712 (2012).https://doi.org/10.2113/econgeo.107.4.68.3

  51. S. Madanipour, T. A. Ehlers, A. Yassaghi, M. Rezaeian, E. Enkelmann, and A. Bahroudi, “Synchronous deformation on the orogenic plateau margins, insights from the Arabia–Eurasia collision,” Tectonophysics 608, 440–451 (2013). https://doi.org/10.1016/j.tecto.2013.09.003

    Article  Google Scholar 

  52. M. Marghany and M. Hashim, “Lineament map** using multispectral remote sensing satellite data,” Int. J. Phys. Sci. 5, 1501–1507 (2010). https://doi.org/10.5897/IJPS.9000350

    Article  Google Scholar 

  53. J. C. Mars and L. C. Rowan, “Regional map** of phyllic-and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms,” Geosphere 2, 161–186 (2006). https://doi.org/10.1130/GES00044.1

    Article  Google Scholar 

  54. F. Masoumi, T. Eslamkish, M. Honarmand, and A. A. Abkar, “Utilization of ASTER data and spectral analysis to discriminate hydrothermally altered areas over Rabor, South of Kerman, Iran,” J. Indian Soc. Remote Sens. 6, 1–17 (2017). https://doi.org/10.1007/s12524-017-0662-1

    Article  Google Scholar 

  55. T. Maurer, “How to pan-sharpen images using the Gram-Schmidt pan-sharpen method-a recipe,” in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science (ISPRS Hannover Workshop, Hannover, Germany, 2013), pp. 239–244.

  56. I. McInnes, N. J. Evans, F. Q. Fu, and S. Garwin, “Application of thermochronology to hydrothermal ore deposits,” Rev. Miner. Geochem. 58, 467–498 (2005a). https://doi.org/10.2138/rmg.2005.58.18

    Article  Google Scholar 

  57. I. McInnes, N. J. Evans, F. Q. Fu, S. Garwin, E. Belousova E., W. L. Griffin, A. Bertens, D. Sukarna, S. Permanadewi, R. L. Andrew, and K. Deckart, “Thermal history analysis of selected Chilean, Indonesian, and Iranian porphyry Cu-Mo-Au deposits,” in Super Porphyry Copper and Gold Deposits: A Global Perspective, Ed. by T. M. Porter (Porter Geoconsult. Publ., Adelaide, Australia. 2005b), pp. 27–42.

    Google Scholar 

  58. S. A. Meshkani, B. Mehrabi, A. Yaghubpur, and M. Sadeghi, “Recognition of the regional lineaments of Iran: Using geospatial data and their implications for exploration of metallic ore deposits,” Ore Geol. Rev. 55, 48–63 (2013). https://doi.org/10.1016/j.oregeorev.2013.04.007

    Article  Google Scholar 

  59. F. Mouthereau, O. Lacombe, and J. Verggs, “Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence,” Tectonophysics 532–535, 27–60 (2012). https://doi.org/10.1016/j.tecto.2012.01.022

  60. M. W. Mwaniki, M. S. Moeller, and G. Schellmann, “A comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in map** geology and visualising lineaments: A case study of central region Kenya,” ISPRS Archives (2015). https://doi.org/10.5194/isprsarchives-XL-7-W3-897-2015

  61. NICICO, Geology and Alteration Survey of Kighal–Burmolk District. Scale 1 : 5000 (Pars Olang Comp., Natl. Iran. Copper Industr. Co., 2007).

  62. Y. Ninomiya, “Stabilized vegetation index and several mineralogic indices defined for ASTER VNIR and SWIR data,” in Proceedings of International Geoscience and Remote Sensing Symposium (Toulouse, France, 2003). https://doi.org/10.1109/IGARSS.2003.1294172

  63. S. T. O’Driscoll, “Observations of the lineament-ore relation,” Philos. Trans. R. Soc., A 317, 195–218 (1986). https://doi.org/10.1098/rsta.1986.0032

  64. F. Pirajno, Hydrothermal Mineral Deposits: Principles and Fundamental Concepts for the Exploration Geologist (Springer Sci. & Business Media, Berlin, Germany. 2012).

    Google Scholar 

  65. B. Pour, M. Hashim, and M. Marghany, “Using spectral map** techniques on short wave infrared bands of AST-ER remote sensing data for alteration mineral map** in SE Iran,” Int. J. Phys. Sci. 6, 917–929 (2011). https://doi.org/10.5897/IJPS10.510

    Article  Google Scholar 

  66. B. Pour and M. Hashim, “Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh–Dokhtar volcanic belt, Iran,” Adv. Space Res. 49, 753–769 (2012). https://doi.org/10.1016/j.asr.2011.11.028

    Article  Google Scholar 

  67. M. Rahnama and R. Gloaguen, “TecLines: A MATLAB-based toolbox for tectonic lineament analysis from satellite images and DEMs. Part 1: Line segment detection and extraction,” Remote Sens. 6, 5938–5958 (2014). https://doi.org/10.3390/rs6075938

    Article  Google Scholar 

  68. T. Ramezani, The study of some productive and barren porphyry copper deposits in Ahar–Arasbaran volcanic belt (AHAVB), NW Iran: with an emphasis on geochemistry of mineralizing fluids, PhD Diss. (Bu-Ali Sina Univ., Hamedan, Iran. 2018).

  69. T. Ramezani, M. Maanijou, S. Asudi, D. Lrntz, and N. Pirouznia, “Comparoson of mineralization of the Sungun and Kighal porphyry‒copper deposits, NW Iran: With an emphasis on fluid inclusion studies, “ J. Econ. Geol. 10 (2), 37‒38 (2018).https://doi.org/10.22067/econ.v10i2.613.405

  70. J. P. Richards, “Lineaments revisited,” Soc. Econ. Geol. Newsl. 42 (1), 14–20 (2000).

    Google Scholar 

  71. J. P. Richards, “Tectono-magmatic precursors for porphyry Cu–(Mo–Au) deposit formation,” Econ. Geol. 98, 1515–1533 (2003). https://doi.org/10.2113/gsecongeo.98.8.1515

    Article  Google Scholar 

  72. J.P. Richards, “Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision,” Ore Geol. Rev. 70, 323–345 (2015). https://doi.org/10.1016/j.oregeorev.2014.11.009

    Article  Google Scholar 

  73. F. Robert, “Structural setting and control of gold-bearing quartz veins of the Val d’Or area, southeastern Abitibi subprovince,” Univ. West. Aust. Short Course Notes, pp. 167–210 (1990).

  74. W. Rockwell and A. H. Hofstra, “Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data—Implications for geologic map** and mineral resource investigations in well-studied and frontier areas,” Geosphere 4, 218–246 (2008). https://doi.org/10.1130/GES00126.1

    Article  Google Scholar 

  75. D. Rokos, D. Argialas, R. Mavrantza, K. St-Seymour, C. Vamvoukakis, M. Kouli, S. Lamera, H. Paraskevas, I. Karfakis, and G. Denes, “Structural map** and analysis for a preliminary investigation of possible gold mineralization by using remote sensing and geochemical techniques in a GIS environment: Island of Lesvos, Aegean Sea, Hellas,” Nat. Resour. Res. 9, 277–293 (2000).

    Article  Google Scholar 

  76. L. C. Rowan and J. C. Mars, “Lithologic map** in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data,” Remote Sens. Environ. 84, 350–366 (2003). https://doi.org/10.1016/S0034-4257(02)00127-X

    Article  Google Scholar 

  77. L. C. Rowan, R. G. Schmidt, and J. C. Mars, “Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data,” Remote Sens. Environ. 104, 74–87 (2006). https://doi.org/10.1016/j.rse.2006.05.014

    Article  Google Scholar 

  78. F. Sabins, “Remote sensing for mineral exploration,” Ore Geol. Rev. 14, 157–183 (1999). https://doi.org/10.1016/S0169-1368(99)00007-4

    Article  Google Scholar 

  79. R. A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing (Acad. Press, Elsevier, 2006).

  80. E. Seedorff, M. D. Barton, W. J. Stavast, and D. J. Maher, “Root zones of porphyry systems: Extending the porphyry model to depth,” Econ. Geol. 103, 939–956 (2008). https://doi.org/10.2113/gsecongeo.103.5.939

    Article  Google Scholar 

  81. R. H. Sillitoe, “The tops and bottoms of porphyry copper deposits,” Econ. Geol. 68 (6), 799–815 (1973).

    Article  Google Scholar 

  82. R. H. Sillitoe, “Gold-rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery,” Rev. Econ. Geol. 13, 315–345 (2000).

    Google Scholar 

  83. V. Simmonds, “Geochemistry and petrogenesis of an adakitic quartz-monzonitic porphyry stock and related cross-cutting dike suites, Kighal, northwest Iran,” Int. Geol. Rev. 55, 1126–1144 (2013). https://doi.org/10.1080/00206814.2013.767491

    Article  Google Scholar 

  84. A. Taghavi, M. Maanijou, D. R. Lentz, and A. A. Sepahi, “Sub-pixel and pixel based alteration map** of porphyry system using ASTER data: Regional case study in western Yazd, Iran,” Int. J. Image Data Fusion 10, 300–326 (2019) https://doi.org/10.1080/19479832.2019.1611668

    Article  Google Scholar 

  85. W. Walker, “Lineaments; ineffective guides to ore deposits; a discussion,” Econ. Geol. 72, 1359–1361 (1977). https://doi.org/10.2113/gsecongeo.72.7.1359

    Article  Google Scholar 

  86. R. Wang, D. Zhu, Q. Wang, Z. Hou, Z. Yang, Z. Zhao, and X. Mo, “Porphyry mineralization in the Tethyan orogen,” Sci. China Earth Sci. 63 (12), 2042–2067 (2020). https://doi.org/10.1007/s11430-019-9609-0

    Article  Google Scholar 

  87. E. Yetkin, V. Toprak, and M. L. Suezen, Alteration map** by remote sensing: application to Hasandağ–Melendiz volcanic complex, MSc Diss. (Middle East Techn. Univ., Turkey, 2003).

  88. S. J. Yousefi, H. Ranjbar, S Alirezaei, S Dargahi, and D. R. Lentz, “Comparison of hydrothermal alteration patterns associated with porphyry Cu deposits hosted by granitoids and intermediate-mafic volcanic rocks, Kerman Magmatic Arc, Iran: Application of geological, mineralogical and remote sensing data,” J. African Earth Sci. 142, 112–123 (2018). https://doi.org/10.1016/j.jafrearsci.2018.03.005

    Article  Google Scholar 

  89. B. Zamani and F. Masson, “Recent tectonics of East (Iranian) Azerbaijan from stress state reconstructions,” Tectonophysics 611, 61–82 (2014). https://doi.org/10.1016/j.tecto.2013.10.015

    Article  Google Scholar 

  90. B. Zamani, “Experimental tectonic modelling of East (Iranian) Azerbaijan, inferred from stress pattern,” Model. Earth Syst. Environ. 3 (2), 605–613 (2017). https://doi.org/10.1007/s40808-017-0321-0

    Article  Google Scholar 

  91. N. Zhang and K. Zhou, “Identification of hydrothermal alteration zones of the Baogutu porphyry copper deposits in northwest China using ASTER data,” J. A-ppl. Remote Sens. 11 (1), 015016 (2017). https://doi.org/10.1117/1.JRS.11.015016

    Article  Google Scholar 

  92. X. Zhang, M. Pazner, and N. Duke, “Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California),” J. Photogramm. Remote Sens. 62, 271–282 (2007). https://doi.org/10.1016/j.isprsjprs.2007.04.004

    Article  Google Scholar 

  93. ArcGIS 10.6. https://desktop.arcgis.com/

  94. Envi 5.1. https://www.envi-met.com/

  95. PCI Geomatica. https://www.pcigeomatics.com/

  96. Rockworks 16. https://www.rockware.com/

  97. Geoanalyst. https://www.geoanalyst.net/

Download references

ACKNOWLEDGMENTS

The authors sincerely appreciate the geologists and staff of Ahar and Sungun Copper Company (Tabriz, Iran) for their kind help. We are grateful to Prof. Hossein Azizi (University of Kurdistan, Sanandaj, Iran) for his constructive guidance. Prof. Lorence Collins (California State University, Northridge, USA) assisted in stylistic text processing of the article.

Authors are thankful to anonymous reviewers for helpful comment and the editor for thorough editing.

Funding

This work supported by Bu-Ali Sina University (Hamedan, Iran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Maanijou.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, T., Maanijou, M., Taghavi, A. et al. Influence of Tectonic Factor on Porphyry Copper Deposits Localization and Distribution (Arasbaran District, NW Iran): Synthesis of Alteration Patterns and Lineaments Using Digital Techniques. Geotecton. 56, 382–403 (2022). https://doi.org/10.1134/S0016852122030062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852122030062

Keywords:

Navigation