Log in

Using Classification Methods in Forecasting the Level of Geomagnetic Field Disturbance Based on the Kp-Index

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The paper explores the possibilities of using data classification methods when forecasting time series of the geomagnetic Kp-index by machine learning methods. To classify categories of the Kp-index based on the degree of disturbance, linear and logistic regression, random forest, gradient boosting on top of decision trees, and artificial neural networks of various architectures are used. The results of these methods are compared with a trivial inertial forecast (the statistical indicators of which for problems of this type are always high) at horizons from 3 h to 1 day in 3-h increments. The problem of choosing a cross-validation scheme for selecting the model hyperparameters, ways to overcome the imbalance of categories, the relative importance of input features, as well as the dependence of the results on the test sample (beginning of the 25th solar activity cycle) on inclusion in the training sample of data from the 23rd and 24th cycles or only the 24th cycles are studied. Based on the results, conclusions are drawn about the preferred methods for classifying values of the Kp-index based on the level of geomagnetic disturbance. Ways for further research and possible improvement of the classification quality are outlined, including for determining the characteristic hidden states of Earth’s magnetosphere as a dynamic system in order to improve the quality of forecasting geomagnetic indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. ACE Browse Hourly Averages. https://izw1.caltech.edu/ cgi-bin/dib/rundibviewbr/ACE/ASC/DATA/browse-data?ACE_BROWSE.HDF!hdfref;tag=1962,ref=3,s=0.

  2. Akasofu, S.-I. and Chapman, S., Solar–Terrestrial Physics, Oxford: Clarendon Press, 1972.

    Google Scholar 

  3. Bala, R. and Reiff, P., Improvements in short-term forecasting of geomagnetic activity, Space Weather, 2012, vol. 10, no. 6, p. S06001. https://doi.org/10.1029/2012SW000779

    Article  Google Scholar 

  4. Bartels, J.R., The standardized index, Ks and the planetary index, Kp, IATME Bull., 1949, vol. 12b, pp. 97–120.

    Google Scholar 

  5. Bartels, J., Heck, N.H., and Johnson, H.F., The three-hour-range index measuring geomagnetic activity, J. Geophys. Res., 1939, vol. 44, no. 4, pp. 411–454. https://doi.org/10.1029/TE044i004p00411

    Article  Google Scholar 

  6. Belakhovsky, V.B., Pilipenko, V.A., Sakharov, Ya.A., and Selivanov, V.N., The growth of geomagnetically induced currents during CME and CIR geomagnetic storms in 2021, Bull. Russ. Acad. Sci.: Phys., 2023, vol. 87, no. 2, pp. 236–242. https://doi.org/10.3103/S1062873822700988

    Article  CAS  Google Scholar 

  7. Belov, A.V., Villoresi, G., Dorman, L.I., et al., Effect of the space on operation of satellites, Geomagn. Aeron. (Engl. Transl.), 2004, vol. 44, no. 4, pp. 461–468.

  8. Boberg, F., Wintoft, P., and Lundstedt, H., Real time Kp predictions from solar wind data using neural networks, Phys. Chem. Earth, Part C: Sol., Terr. Planet. Sci., 2000, vol. 25, no. 4, pp. 275–280. https://doi.org/10.1016/S1464-1917(00)00016-7

    Article  Google Scholar 

  9. Boroyev, R.N., Vasiliev, M.S., and Baishev, D.G., The relationship between geomagnetic indices and the interplanetary medium parameters in magnetic storm main phases during CIR and ICME events. J. Atmos. Sol.-Terr. Phys., 2020, vol. 204, p. 105290. https://doi.org/10.1016/j.jastp.2020.105290

    Article  Google Scholar 

  10. Breiman, L., Random forests, Mach. Learn., 2001, vol. 45, pp. 5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  11. Chawla, N.V., Bowyer, K.W., Hall, L.O., and Kegelmeyer, W.P., SMOTE: Synthetic minority over-sampling technique, J. Artif. Intell. Res., 2002, vol. 16, pp. 321–357. https://doi.org/10.1613/jair.953

    Article  Google Scholar 

  12. Cho, K., van Merriënboer, B., Bahdanau, D., and Bengio, Y., On the properties of neural machine translation: encoder–decoder approaches, in Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar, Association for Computational Linguistics, 2014, pp. 103–111. https://doi.org/10.3115/v1/W14-4012.

  13. Cole, D.G., Space weather: its effects and predictability, Space Sci. Rev., 2003, vol. 107, pp. 295–302. https://doi.org/10.1023/A:1025500513499

    Article  Google Scholar 

  14. Cox, D.R., The regression analysis of binary sequences, J. R. Stat. Soc.: Ser. B (Methodol.), 1958, vol. 20, no. 2, pp. 215–242. https://www.nuffield.ox.ac.uk/users/cox/cox48.pdf.

    Article  Google Scholar 

  15. Daglis, I.A., Space Storms and Space Weather, Dordrecht: Kluwer, 2001. https://doi.org/10.1007/978-94-010-0983-6

  16. Dolenko, S.A., Orlov, Yu.V., Persiantsev, I.G., and Shugai, Ju.S., Neural network algorithm for events forecasting and its application to space physics data, Lect. Notes Comput. Sci., 2005, vol. 3697, pp. 527‒532. https://doi.org/10.1007/11550907_83

    Article  Google Scholar 

  17. Dolenko, S.A., Myagkova, I.N., Shiroky, V.R., and Persiantsev, I.G., Objective discrimination of geomagnetic disturbances and prediction of Dst index by artificial neural networks, in Proc. 10th International Conference “Problems of Geocosmos”, St. Petersburg, 2014, pp. 270–275.

  18. Dolenko, S.A., Myagkova, I.N., and Persiantsev, I.G., The use of artificial neural network segmentation of multivariate time series for the analysis of geomagnetic disturbances, Moscow Univ. Phys. Bull., 2016, vol. 71, no. 4, pp. 454–463.

    Article  Google Scholar 

  19. Efitorov, A.O., Myagkova, I.N., Shirokii, V.R., and Dolenko, S.A., The prediction of the Dst-index based on machine learning methods, Cosmic Res., 2018, vol. 56, no. 6, pp. 434–441. https://doi.org/10.1134/S0010952518060035

    Article  Google Scholar 

  20. Elliott, H.A., Jahn, J.-M., and McComas, D.J., The Kp index and solar wind speed relationship: insights for improving space weather forecasts, Space Weather, 2013, vol. 11, pp. 339–349. https://doi.org/10.1002/swe.20053

    Article  Google Scholar 

  21. Ermolaev, Yu.I. and Ermolaev, M.Yu., Solar and interplanetary sources of geomagnetic storms: Space weather aspects, Geofiz. Protsessy Biosfera, 2009, vol. 8, no. 1, pp. 5–35.

    Google Scholar 

  22. Friedman, J.H., Greedy function approximation: a gradient boosting machine, Ann. Stat., 2002, vol. 29, no. 5, pp. 1189–1232.

  23. Gadzhiev, I., Myagkova, I., and Dolenko, S., Use of classification algorithms to predict the grade of geomagnetic disturbance, in Advances in Neural Computation, Machine Learning, and Cognitive Research VI: NEUROINFORMATICS 2022, Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V., and Tiumentsev, Y., Eds., Cham, Springer, 2023, vol. 1064, pp. 426–435. https://doi.org/10.1007/978-3-031-19032-2_44.

  24. Hochreiter, S. and Schmidhuber, J., Long short-term memory, Neural. Comput., 1997, vol. 9, no. 8, pp. 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  CAS  Google Scholar 

  25. Hoerl, A.E. and Kennard, R.W., Ridge regression: Biased estimation to nonorthogonal problems, Technometrics, 1970, vol. 12, pp. 56–67.

    Google Scholar 

  26. Iucci, N., Levitin, A.E., Belov, A.V., et al., Space weather conditions and spacecraft anomalies in different orbits, Space Weather, 2005, vol. 3, no. 1, p. S01001. https://doi.org/10.1029/2003SW000056

    Article  Google Scholar 

  27. Ji, E. Y., Moon, Y. J., Park, J., Lee, J. Y., and Lee, D. H., Comparison of neural network and support vector machine methods for Kp forecasting, J. Geophys. Res.: Space Phys., 2013, vol. 118, pp. 5109–5117. https://doi.org/10.1002/jgra.50500

    Article  Google Scholar 

  28. Kalegaev, V.V., Alekseev, I.I., and Kropotkin, A.P., Magnetic storms in the magnetosphere and substorms. http://nuclphys.sinp.msu.ru/magn/index.html.

  29. Kataoka, R. and Miyoshi, Y., Average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit, Ann. Geophys., 2008, vol. 26, pp. 1335–1339.https://doi.org/10.5194/angeo-26-1335-2008

    Article  CAS  Google Scholar 

  30. Ke, G., Q. Meng, T. Finley, et al., LightGBM: A highly efficient gradient boosting decision tree, Adv. Neural Inf. Process. Syst., 2017, vol. 30, pp. 3149–3157.

    Google Scholar 

  31. Kingma, D.P. and Ba, J., Adam: a method for stochastic optimization, in Proceedings of International Conference on Learning Representations, 2015. https://doi.org/10.48550/ar**v.1412.6980

  32. Kudela, K., Space weather near Earth and energetic particles: Selected results, J. Phys.: Conf. Ser., 2013, vol. 409, no. 1, p. 012017. https://doi.org/10.1088/1742-6596/409/1/012017

    Article  CAS  Google Scholar 

  33. Lazutin, L.L., Mirovye i polyarnye magnitnye buri (Worldwide and Polar Magnetic Storms), Moscow: MGU, 2012.

  34. McGranaghan, R.M., Camporeale, E., Georgoulis, M., and Anastasiadis, A., Space weather research in the Digital Age and across the full data lifecycle: Introduction to the topical issue, J. Space Weather Space Clim., 2021, vol. 11, p. 50. https://doi.org/10.1051/swsc/2021037

    Article  Google Scholar 

  35. Myagkova, I.N. and Dolenko, S.A., Comparative analysis of the quality of prediction for fluences of relativistic electrons of the outer radiation belt of the Earth at different phases of the solar activity cycle, in Proceedings of the 11th International Conference “Problems of Geocosmos”, St. Petersburg, 2016, p. 79.

  36. Myagkova, I.N., Shugay, Yu.S., Veselovsky, I.S., and Yakovchouk, O.S., Comparative analysis of recurrent high-speed solar wind streams influence on the radiation environment of near-Earth space in April–July 2010, Sol. Syst. Res., 2013, vol. 47, no. 2, pp. 141–155. https://doi.org/10.1134/S0038094613020068

    Article  CAS  Google Scholar 

  37. Myagkova, I., Shiroky, V., and Dolenko, S., Prediction of geomagnetic indexes with the help of artificial neural networks, in VIII International Conference “Solar-Terrestrial Relations and Physics of Earthquake Precursors” (E3S Web of Conferences), 2017, vol. 20, p. 02011. https://doi.org/10.1051/e3sconf/20172002011

  38. Nishida, A., Geomagnetic Diagnosis of the Magnetosphere, New York: Springer, 1978. https://doi.org/10.1093/gji/61.3.680

  39. Prokhorenkova, L., G. Gusev, A. Vorobev, et al., CatBoost: Unbiased boosting with categorical features, in 32nd Conference on Neural Information Processing Systems, Montreal, 2019, pp. 6638–6648. https://doi.org/10.48550/ar**v.1706.09516

  40. Qiu, Q., Fleeman, J.A., and Ball, D.R., Geomagnetic disturbance: A comprehensive approach by American electric power to address the impacts, IEEE Elect. Mag., 2015, vol. 3, no. 4, pp. 22–33. https://doi.org/10.1109/MELE.2015.2480615

    Article  Google Scholar 

  41. Romanova, N.V., Pilipenko, V.A., Yagova, N.V., and Belov, A.V., Statistical correlation of the rate of failures on geosynchronous satellites with fluxes of energetic electrons and protons, Cosmic Res., 2005, vol. 43, no. 3, pp. 179–185.

    Article  CAS  Google Scholar 

  42. Rumelhart, D.E., Hinton, G.E., Williams, R.J., et al., Learning internal representations by error propagation, in Paralleled Distributed Processing, Cambridge: MIT Press, 1986, vol. 1, pp. 318–362.

    Book  Google Scholar 

  43. Schrijver, C.J., Kauristie, K., Aylward, A.D., et al., Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS, Adv. Space Res., 2015, vol. 55, no. 12, pp. 2745–2807. https://doi.org/10.1016/j.asr.2015.03.023

    Article  Google Scholar 

  44. Tan, Y., Hu, Q., Wang, Z., and Zhong, Q., Geomagnetic index Kp forecasting with LSTM, Space Weather, 2018, vol. 16, pp. 406–416. https://doi.org/10.1002/2017SW001764

    Article  Google Scholar 

  45. Vassiliadis, D., Forecasting space weather, in Space Weather: Physics and Effects, Berlin: Springer, 2007, pp. 403–425. https://doi.org/10.1007/978-3-540-34578-7_14

  46. Wang, J., Zhong, Q., Liu, S., Miao, J., Liu, F., Li, Z., and Tang, W., Statistical analysis and verification of 3-hourly geomagnetic activity probability predictions., Space Weather, 2015, vol. 13, pp. 831–852. https://doi.org/10.1002/2015SW001251

    Article  Google Scholar 

  47. World Data Center for Geomagnetism, Kyoto. http://wdc.kugi.kyoto-u.ac.jp.

Download references

Funding

The study was supported by the Russian Science Foundation, grant no. 23-21-00237 (https://rscf.ru/en/project/23-21-00237/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. M. Gadzhiev, O. G. Barinov, I. N. Myagkova or S. A. Dolenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadzhiev, I.M., Barinov, O.G., Myagkova, I.N. et al. Using Classification Methods in Forecasting the Level of Geomagnetic Field Disturbance Based on the Kp-Index. Geomagn. Aeron. 64, 415–426 (2024). https://doi.org/10.1134/S0016793224600140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793224600140

Navigation