Log in

Comparative Analysis of Meridional and Azimuthal Propagation of Magnetic Variations and Equivalent Current Vortices of Geomagnetic Pc5 Pulsations

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The propagation velocities of geomagnetic Pc5 pulsations in the azimuthal and meridional directions were analyzed for a series of events. Two methods were used: based on the phase delays of the signal between stations and the displacement of vortex centers of their equivalent current systems. The analysis showed that the propagation of pulsations and vortices coincides in direction—along the meridian, they predominantly propagate northward. In most cases, the propagation velocity is 5 km/s for pulsations and 2 km/s for vortices. In the azimuthal direction, pulsations and vortices propagate westward, with pulsation propagation velocity of 10 km/s and vortex propagation velocity of 3 km/s. However, the distributions of azimuthal velocities for both pulsations and vortices exhibit comparable maxima corresponding to eastward propagation: pulsations at a velocity of 10 km/s and vortices at 5 km/s. It is concluded that the measured phase velocities of pulsations at the ionospheric level are approximately twice the group velocities of vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Allan, W., White, S.P., and Poulter, E.M., Impulse-excited hydromagnetic cavity and field-line resonances in the magnetosphere, Planet. Space Sci., 1986, vol. 34, pp. 371–385. https://doi.org/10.1016/0032-0633(86)90144-3

    Article  Google Scholar 

  2. Chen, L. and Hasegawa, A., A theory of long-period magnetic pulsations: 1. Steady state excitation of field line resonance, J. Geophys. Res., 1974, vol. 79, no. 7, pp. 1024–1032. https://doi.org/10.1029/JA079i007p01024

    Article  Google Scholar 

  3. Chinkin, V.E., Soloviev, A.A., and Pilipenko, V.A., Identification of vortex currents in the ionosphere and estimation of their parameters based on ground magnetic data, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 5, pp. 559–569. https://doi.org/10.1134/S0016793220050035

  4. Coordinated Data Analysis Web (CDAWeb). http://cdaweb.gsfc.nasa.gov.

  5. Friis-Christensen, E., Vennerstrom, S., McHenry, M.A., and Clauer, C.R., Ionospheric traveling convection vortices observed near the polar cleft-A triggered response to sudden changes in the solar wind, Geophys. Res. Lett., 1988, vol. 15, pp. 253–256. https://doi.org/10.1029/GL015i003p00253

    Article  Google Scholar 

  6. Gjerloev, J.W., The SuperMAG data processing technique, J. Geophys. Res., 2012, vol. 117, p. A09213. https://doi.org/10.1029/2012JA017683

    Article  Google Scholar 

  7. Hamming, R.W., Digital Filters, Englewood Cliffs: Prentice-Hall, 1977; Moscow: Sov. radio, 1980.

  8. Hughes, W.J., Southwood, D.J., Mauk, B., McPherron, R.L., and Barfield, J.N., Alfvén waves generated by an inverted plasma energy distribution, Nature, 1978, vol. 275, pp. 43–45. https://doi.org/10.1038/275043a0

    Article  Google Scholar 

  9. Kataoka, R., Fukunishi, H., Lanzerott, L.J., Rosenberg, T.J., Weatherwax, A.T., Engebretson, M.J., and Watermann, J., Traveling convection vortices induced by solar wind tangential discontinuities, J. Geophys. Res.: Space Phys., 2002, vol. 107, no. A12, pp. SMP22-1–SMP22-12. https://doi.org/10.1029/2002JA009459

  10. Klibanova, Yu.Yu., Mishin, V.V., Tsegmed, B., Moiseev, A.V., Properties of daytime long-period pulsations during magnetospheric storm commencement, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 4, pp. 426–440.

  11. Korotova, G., Sibeck, D., Engebretson, M., Balikhin, M., Thaller, S., Kletzing, C., Spence, H., and Redmon, R., Multipoint observations of compressional Pc 5 pulsations in the dayside magnetosphere and corresponding particle signatures, Ann. Geophys., 2020, vol. 38, pp. 1267–1281. https://doi.org/10.5194/angeo-38-1267-2020

    Article  Google Scholar 

  12. Leonovich, A.S., Mishin, V.V., and Cao, J.B., Penetration of magnetosonic waves into the magnetosphere: influence of a transition layer, Ann. Geophys., 2003, vol. 21, pp. 1083–1093. https://doi.org/10.5194/angeo-21-1083-2003

    Article  Google Scholar 

  13. Lühr, H. and Blawert, W., Ground signatures of travelling convection vortices, in Solar Wind Sources of Magnetospheric ULF Waves, Geophys. Monogr. Ser., vol. 81, Engebretson, M.J., et al., Eds., Washington, DC: AGU, 1994, pp. 231–251.

  14. Makarov, G.A., Baishev, D.G., Solov’ev, S.I., Pilipenko, V.A., Engebretson, M., and Yumoto, K., Meridional propagation velocity of the geomagnetic sudden impulse in the high-latitude region, Geomagn. Aeron. (Engl. Transl.), 2001, vol. 41, no. 5, pp. 578–582.

  15. Makarov, G.A., Solov’ev, S.I., Engebretson, M., and Yumot-o, K., Azimuthal propagation of the geomagnetic sudden impulse at high latitudes during a drastic fall of the solar wind pressure on December 15, 1995, Geomagn. Aeron. (Engl. Transl.), 2002, vol. 42, no. 1, pp. 38–46.

  16. Mann, I.R., Voronkov, I., Dunlop, M., Donovan, E., Yeoman, T.K., Milling, D.K., Wild, J., Kauristie, K., Amm, O., Bale, S.D., Balogh, A., Viljanen, A., and Opgenoorth, H.J., Coordinated ground-based and cluster observations of large amplitude global magnetospheric oscillations during a fast solar wind speed interval, Ann. Geophys., 2002, vol. 20, pp. 405–426. https://doi.org/10.5194/angeo-20-405-2002

    Article  CAS  Google Scholar 

  17. Mishin, V.V., Accelerated motions of the magnetopause as a trigger of the Kelvin–Helmholtz instability, J. Geophys. Res., 1993, vol. 98 N, pp. 21365–21372. https://doi.org/10.1029/93JA00417

  18. Mishin, V.V. and Matyukhin, Yu.G., Kelvin–Helmholtz instability at magnetopause as a possible source of wave energy in the Earth’s magnetosphere, Geomagn. Aeron., 1986, vol. 26, no. 6, pp. 952–957.

    Google Scholar 

  19. Motoba, T., Kikuchi, T., Lühr, H., Tachihara, H., and Kitamura, T.I., Hayash, K., et al., Global Pc 5 caused by a DP2-type ionospheric current system, J. Geophys. Res., 2002, vol. 107, pp. 1032–1047. https://doi.org/10.1029/2001JA900156

    Article  Google Scholar 

  20. Pronin, V.E., Zakharov, V.I., Pilipenko, V.A., Martines-Bedenko, V.A., and Murr, D.L., Response of ionospheric total electron content to convective vortices, Cosmic Res., (Engl. Transl.), 2019, vol. 57, pp. 69–78.

  21. Pulkkinen, A., et al. (BEAR Working Group), Separation of the geomagnetic variation field on the ground into external and internal parts using the spherical elementary current system method, Earth Planets Space, 2003, vol. 55, pp. 117–129. https://doi.org/10.1186/BF03351739

    Article  Google Scholar 

  22. Saito, T., Long-period irregular magnetic pulsation Pi3, Space Sci. Rev., 1978, vol. 21, pp. 427–467. https://doi.org/10.1007/BF00173068

    Article  Google Scholar 

  23. Samson, J.C., Harrold, B.G., Ruohoniemi, J.M., Greenwald, R.A., and Walker, A.D.M., Field line resonances associated with MHD waveguides in the magnetosphere, Geophys. Res. Lett., 1992, vol. 19, no. 5, pp. 441–444. https://doi.org/10.1029/92GL00116

    Article  Google Scholar 

  24. Southwood, D.J., Some features of field line resonances in the magnetosphere, Planet. Space Sci., 1974, vol. 22, pp. 483–491.

    Article  Google Scholar 

  25. Southwood, D.J., Dungey, J.W., and Etherington, R.J., Bounce resonant interaction between pulsations and trapped particles, Planet. Space Sci., 1969, vol. 17, pp. 349–361. https://doi.org/10.1016/0032-0633(69)90068-3

    Article  Google Scholar 

  26. SuperMAG Web Service API. http://supermag.jhuapl.edu/mag.

  27. Vanhamäki, H. and Juusola, L., Introduction to spherical elementary current systems, Ionos Multi-Spacecraft Anal. Tools, 2020, vol. 17, pp. 5–33. https://doi.org/10.1007/978-3-030-26732-2_13

    Article  Google Scholar 

  28. Vanhamäki, H. and Juusola, L., Program code as supplementary material, 2020. https://springer.longhoe.net/ chapter/10.1007/978-3-030-26732-2_2#Sec18.

  29. Vorobiev, V.G., Dynamics of hall vortices in the daytime high-latitude region, Geomagn. Aeron., 1993, vol. 33, no. 5, pp. 58–68.

    Google Scholar 

  30. Wright, A.N., Dispersion and wave coupling in inhomogeneous MHD waveguides, J. Geophys. Res., 1994, vol. 99, pp. 159–167. https://doi.org/10.1029/93JA02206

    Article  Google Scholar 

  31. Yeoman, T.K., Tian, M., Lester, M., and Jones, T.B., A study of Pc 5 hydromagnetic waves with equatorward phase propagation, Planet. Space Sci., 1992, vol. 40, pp. 797–810. https://doi.org/10.1016/0032-0633(92)90108-Z

    Article  Google Scholar 

  32. Zesta, E., Hughes, W.J., and Engebretson, M.J., A statistical study of traveling convection vortices using the magnetometer array for cusp and cleft studies, J. Geophys. Res., 2002, vol. 107, p. 18.1–18.21. https://doi.org/10.1029/1999JA000386

  33. Zhao, H., Liu, Y., Zong, Q., Yang, H., Hu, Z., Zhou, X. and Sun, J., Poleward-moving black aurora associated with impulse-excited field-line resonances in the dawnside sector: THEMIS and ground observations, Universe, 2023, vol. 9, no. 6, p. 250. https://doi.org/10.3390/universe9060250

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We express our gratitude to the leaders of the following projects for providing access to data: the SUPERMAG project (http://supermag.jhuapl.edu/mag), including the IMAGE (https://space.fmi.fi/image/www/index.php?), GREENLAND COAST CHAIN (https://www.space. dtu.dk/english/research/scientific-data-and-models/magnetic_ground_stations), CANMOS (https://geomag.nrcan. gc.ca/obs/canmos-en.php), GIMA (https://www.gi.alaska. edu/monitors/magnetometer); INTERMAGNET (https:// intermagnet.org/); USGS (https://www.usgs.gov/programs/ geomagnetism/science/observatories), as well as the satellite observation dataset from CDAWEB (https://cdaweb.gsfc. nasa.gov/).

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Moiseev, V. I. Popov or S. A. Starodubtsev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseev, A.V., Popov, V.I. & Starodubtsev, S.A. Comparative Analysis of Meridional and Azimuthal Propagation of Magnetic Variations and Equivalent Current Vortices of Geomagnetic Pc5 Pulsations. Geomagn. Aeron. 64, 399–414 (2024). https://doi.org/10.1134/S0016793224600061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793224600061

Navigation