Log in

Main Time Characteristics of Cosmic Ray Variations and Related Parameters in Magnetic Clouds

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The behavior of the main parameters of the interplanetary medium, cosmic ray variations, and geomagnetic activity as magnetic clouds pass the Earth (466 events from 1967 to 2021) was studied. Time distributions of these parameters during magnetic clouds passage are considered. It is shown that the maximum values of the solar wind velocity, interplanetary magnetic field strength, and geomagnetic activity indices are more often recorded in the front part of the magnetic cloud, while the minimum values of the temperature index, density, and equatorial component of cosmic ray anisotropy can be observed in any part of the studied structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Abunina, M.A., Belov, A.V., Shlyk, N.S., Abunin, A.A., Oleneva, V.A., Pryamushkina, I.I., and Yanke, V.G., Forbush effects created by coronal mass ejections with magnetic clouds, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 5, pp. 678–687. https://doi.org/10.1134/S0016793221050029

  2. Badruddin, Yadav, R.S., and Yadav, N.R., Influence of magnetic clouds on cosmic ray intensity variation, Sol. Phys., 1986, vol. 105, no. 2, pp. 413–428. https://doi.org/10.1007/BF00172057

    Article  ADS  CAS  Google Scholar 

  3. Belov, A.V., Eroshenko, E.A., Oleneva, V.A., Struminsky, A.B., and Yanke, V.G., What determines the magnitude of Forbush decreases?, Adv. Space Res., 2001, vol. 27, pp. 625–630.

    Article  ADS  CAS  Google Scholar 

  4. Belov, A.V., Abunin, A.A., Abunina, M.A., Eroshenko, E.A., Oleneva, V.A., and Yanke, V.G., Density variations of galactic cosmic rays in magnetic clouds, Geomagn. Aeron. (Engl. Transl.), 2015a, vol. 55, no. 4, pp. 430–441. https://doi.org/10.1134/S0016793215040027

  5. Belov, A., Abunin, A., Abunina, M., Eroshenko, E., Oleneva, V., Yanke, V., Papaioannou, A., and Mavromichalaki, H., Galactic cosmic ray density variations in magnetic clouds, Sol. Phys., 2015b, vol. 290, pp. 1429–1444. https://doi.org/10.1007/s11207-015-0678-z

    Article  ADS  Google Scholar 

  6. Belov, A.V., Eroshenko, E.A., Yanke, V.G., Oleneva, V.A., Abunin, A.A., and Abunina, M.A., Global survey method for the world network of neutron monitors, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 3, pp. 356–372. https://doi.org/10.1134/S0016793218030039

  7. Bothmer, V. and Schwenn, R., The structure and origin of magnetic clouds in the solar wind, Ann. Geophys., 1998, vol. 16, pp. 1–24.

    Article  ADS  Google Scholar 

  8. Burlaga, L., Magnetic clouds, in Physics of the Inner Heliosphere II. Physics and Chemistry in Space, Schwenn R. and Marsch, E., Eds., Berlin: Springer, 1991, vol. 21, pp. 1–22. https://doi.org/10.1007/978-3-642-75364-0_1.

  9. Burlaga, L.F. and Behannon, K.W., Magnetic clouds: Voyager observations between 2 and 4 AU, Sol. Phys., 1982, vol. 81, pp. 181–192. https://doi.org/10.1007/BF00151989

    Article  ADS  Google Scholar 

  10. Burlaga, L., Sittler, E., Mariani, F., and Schwenn, R., Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations, J. Geophys. Res., 1981, vol. 86, pp. 6673–6684. https://doi.org/10.1029/JA086iA08p06673

    Article  ADS  Google Scholar 

  11. Burlaga, L.F., Behannon, K.W., and Klein, L.W., Compound streams, magnetic clouds, and major geomagnetic storms, J. Geophys. Res., 1987, vol. 92, no. A6, pp. 5725–5734.

    Article  ADS  Google Scholar 

  12. Fadaaq, M. and Badruddin, B., Modulation of galactic cosmic rays due to magnetic clouds and associated structures in the interplanetary space: 1996–2018, Astrophys. J., 2021a, vol. 64, no. 2, pp. 210–218. https://doi.org/10.1007/s10511-021-09682-3

    Article  Google Scholar 

  13. Fadaaq, M. and Badruddin, B., Study of transient modulation of galactic cosmic rays due to interplanetary manifestations of coronal mass ejections: 2010–2017, Astrophys. Space Sci., 2021b, vol. 366, p. 10. https://doi.org/10.1007/s10509-021-03918-6

    Article  ADS  Google Scholar 

  14. Forbush, S.E., On the effects in cosmic-ray intensity observed during the recent magnetic storm, Phys. Rev., 1937, vol. 51, pp. 1108–1109. https://doi.org/10.1103/PhysRev.51.1108.3

    Article  ADS  Google Scholar 

  15. Gopalswamy, N., **e, H., Mäkelä, P., Akiyama, S., Yashiro, S., Kaiser, M.L., Howard, R.A., and Bougeret, J.-L., Interplanetary shocks lacking type II radio bursts, Astrophys. J., 2010, vol. 710, pp. 1111–1126. https://doi.org/10.1088/0004-637X/710/2/1111

    Article  ADS  Google Scholar 

  16. Gosling, J.T., Coronal mass ejections and magnetic flux ropes in interplanetary space, Geophys. Monogr. Ser., 1990, vol. 58, pp. 343–364.

    ADS  Google Scholar 

  17. Gosling, J.T., Bame, S.J., McComas, D.J., and Phillips, J.L., Coronal mass ejections and large geomagnetic storms, Geophys. Res. Lett., 1990, vol. 17, no. 7, pp. 901–904. https://doi.org/10.1029/GL017i007p00901

    Article  ADS  Google Scholar 

  18. Hidalgo, M.A., Cid, C., Viñas, A.F., and Sequeiros, J., A non-force-free approach to the topology of magnetic clouds in the solar wind, J. Geophys. Res., 2002, vol. 107, no. A1, pp. SSH-1–SSH-7. https://doi.org/10.1029/2001JA900100

    Article  Google Scholar 

  19. Huttunen, K., Schwenn, R., Bothmer, V., and Koskinen, H., Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23, Ann. Geophys., 2005, vol. 23, pp. 625–641. https://doi.org/10.5194/angeo-23-625-2005

    Article  ADS  Google Scholar 

  20. Kim, R.-S., Gopalswamy, N., Cho, K.-S., Moon, Y.-J., and Yashiro, S., Propagation characteristics of CMEs associated with magnetic clouds and ejecta, Sol. Phys., 2013, vol. 284, pp. 77–88. https://doi.org/10.1007/s11207-013-0230-y

    Article  ADS  Google Scholar 

  21. King, J.H., Lep**, R.P., and Sullivan, J.D., On the complex state of the interplanetary medium of July 28–29, 1977, J. Geophys. Res., 1982, vol. 87, no. A8, pp. 5881–5887.

    Article  ADS  Google Scholar 

  22. Klein, L. and Burlaga, L., Interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 1982, vol. 87, no. A2, pp. 613–624. https://doi.org/10.1029/JA087iA02p00613

    Article  ADS  Google Scholar 

  23. Kumar, A. and Badruddin, B., Interplanetary coronal mass ejections, associated features, and transient modulation of galactic cosmic rays, Sol. Phys., 2014, vol. 289, pp. 2177–2205. https://doi.org/10.1007/s11207-013-0465-7

    Article  ADS  CAS  Google Scholar 

  24. Lep**, R.P., Jones, J.A., and Burlaga, L.F., Magnetic field structure of interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 1990, vol. 95, no. A8, pp. 11957–11965.

    Article  ADS  Google Scholar 

  25. Lockwood, J.A., Forbush decreases in the cosmic radiation, Space Sci. Rev., 1971, vol. 12, no. 5, pp. 658–715. https://doi.org/10.1007/BF00173346

    Article  ADS  Google Scholar 

  26. Lockwood, J.A., Webber, W.R., and Debrunner, H., Forbush decreases and interplanetary magnetic field disturbances: Association with magnetic clouds, J. Geophys. Res., 1991, vol. 96, no. A7, pp. 11587–11604. https://doi.org/10.1029/91JA01012

    Article  ADS  Google Scholar 

  27. Lynch, B.J., Zurbuchen, T.H., and Fisk, L.A., Internal structure of magnetic clouds: Plasma and composition, J. Geophys. Res., 2003, vol. 108, no. A6, pp. SSH6-1–SSH6-14. https://doi.org/10.1029/2002JA009591

  28. Lynch, B.J., Gruesbeck, J.R., Zurbuchen, T.H., and Antiochos, S.K., Solar cycle-dependent helicity transport by magnetic clouds, J. Geophys. Res., 2005, vol. 110, p. A08107. https://doi.org/10.1029/2005JA011137

    Article  ADS  Google Scholar 

  29. Marubashi, K. and Lep**, R., Long-duration magnetic clouds: A comparison of analyses using torus- and cylinder-shaped flux rope models, Ann. Geophys., 2007, vol. 25, no. 11, pp. 2453–2477. https://doi.org/10.5194/angeo-25-2453-2007

    Article  ADS  Google Scholar 

  30. Masías-Meza, J.J., Dasso, S., Démoulin, P., Rodriguez, L., and Janvier, M., Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays, Astron. Astrophys., 2016, vol. 592, p. A118. https://doi.org/10.1051/0004-6361/201628571

    Article  ADS  CAS  Google Scholar 

  31. Matzka, J., Stolle, C., Yamazaki, Y., Bronkalla, O., and Morschhauser, A., The geomagnetic Kp index and derived indices of geomagnetic activity, Space Weather, 2021, vol. 19, no. 5, p. e2020SW002641.

  32. Melkumyan, A.A., Belov, A.V., Abunina, M.A., Abunin, A.A., Eroshenko, E.A., Oleneva, V.A., and Yanke, V.G., Behavior of the speed and temperature of the solar wind during interplanetary disturbances creating Forbush decreases, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 5, pp. 521–529. https://doi.org/10.1134/S0016793220040106

  33. Melkumyan, A.A., Belov, A.V., Abunina, M.A., Abunin, A.A., Eroshenko, E.A., Yanke, V.G., and Oleneva, V.A., Solar wind temperature–velocity relationship over the last five solar cycles and Forbush decreases associated with different types of interplanetary disturbance, Mon. Not. R. Astron. Soc., 2021, vol. 500, pp. 2786–8797. https://doi.org/10.1093/mnras/staa3366

    Article  ADS  CAS  Google Scholar 

  34. Melkumyan, A.A., Belov, A.V., Abunina, M.A., Shlyk, N.S., Abunin, A.A., Oleneva, V.A., and Yanke, V.G., Similarities and differences between Forbush decreases associated with streams from coronal holes, filament ejections, and ejections from active regions, Geomagn. Aeron. (Engl. Transl.), 2022a, vol. 62, no. 3, pp. 159–177. https://doi.org/10.1134/S0016793222030112

  35. Melkumyan, A.A., Belov, A.V., Abunina, M.A., Shlyk, N.S., Abunin, A.A., Oleneva, V.A., and Yanke, V.G., Features of the behavior of time parameters of Forbush decreases associated with different types of solar and interplanetary sources, Geomagn. Aeron. (Engl. Transl.), 2022b, vol. 62, no. 1, pp. 17–31. https://doi.org/10.1134/S0016793222010133

  36. Parnahaj, I. and Kudela, K., Forbush decreases at a middle latitude neutron monitor: Relations to geomagnetic activity and to interplanetary plasma structures, Astrophys. Space Sci., 2015, vol. 359, p. 35. https://doi.org/10.1007/s10509-015-2484-3

    Article  ADS  Google Scholar 

  37. Richardson, I.G. and Cane, H.V., Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog and summary of properties, Sol. Phys., 2010, vol. 264, pp. 189–237. https://doi.org/10.1007/s11207-010-9568-6

    Article  ADS  CAS  Google Scholar 

  38. Richardson, I.G. and Cane, H.V., Galactic cosmic ray intensity response to interplanetary coronal mass ejections/magnetic clouds in 1995–2009, Sol. Phys., 2011, vol. 270, pp. 609–627. https://doi.org/10.1007/s11207-011-9774-x

    Article  ADS  CAS  Google Scholar 

  39. Shlyk, N.S., Belov, A.V., Abunina, M.A., Abunin, A.A., Oleneva, V.A., and Yanke, V.G., Forbush decreases caused by paired interacting solar wind disturbances, Mon. Not. R. Astron. Soc., 2022, vol. 511, no. 4, pp. 5897–5908. https://doi.org/10.1093/mnras/stac478

    Article  ADS  CAS  Google Scholar 

  40. Tsurutani, B. and Gonzalez, W., The interplanetary causes of magnetic storms: A review, in Magnetic Storms, Tsurutani, B.T., Gonzalez, W.D., Kamide, Y., and Arballo, J.K., Eds., Washington, DC: Am. Geophys. Union, 1997, pp. 77–89. https://doi.org/10.1029/GM098p0077

  41. Tsurutani, B., Gonzalez, W., Tang, F., Akasofu, S.I., and Smith, E.J., Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979), J. Geophys. Res., 1988, vol. 93, no. A8, pp. 8519–8531.

    Article  ADS  Google Scholar 

  42. Wang, Y.M., Ye, P.Z., and Wang, S., Multiple magnetic clouds: Several examples during March–April 2001, J. Geophys. Res., 2003, vol. 108, no. A10, p. 1370. https://doi.org/10.1029/2003JA009850

    Article  Google Scholar 

  43. Wu, C.-C. and Lep**, R.P., Relationships among geomagnetic storms, interplanetary shocks, magnetic clouds, and sunspot number during 1995–2012, Sol. Phys., 2016, vol. 291, pp. 265–284. https://doi.org/10.1007/s11207-015-0806-9

    Article  ADS  Google Scholar 

  44. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Yu., Catalog of large-scale solar wind phenomena during 1976–2000, Cosmic Res., 2009, vol. 47, no. 2, pp. 81–94.

    Article  ADS  CAS  Google Scholar 

  45. Zhang, G. and Burlaga, L., Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases, J. Geophys. Res., 1988, vol. 93, no. A4, pp. 2511–2518.

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Abunina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abunina, M.A., Belov, A.V., Shlyk, N.S. et al. Main Time Characteristics of Cosmic Ray Variations and Related Parameters in Magnetic Clouds. Geomagn. Aeron. 64, 24–31 (2024). https://doi.org/10.1134/S0016793223600856

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600856

Navigation