Log in

Development of a Method for Recovery of the Energy Spectra of Precipitating Electrons from the Data of Measurements in the Atmosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Regular measurements of fluxes of charged particles in the Earth’s atmosphere conducted by the Lebedev Physical Institute (LPI) made it possible to register since 1963 more than 500 cases of precipitation of energetic electrons in the northern polar latitudes. The obtained experimental data represent the world’s only database on the precipitation of electrons registered directly in the Earth’s atmosphere. Primary precipitating electrons are absorbed in the upper layers of the atmosphere. However, the fluxes of secondary photons generated by them can penetrate deep into the atmosphere, sometimes to heights of ~20 km, which are accessible for balloon measurements by the Lebedev Physical Institute. This paper presents a new technique for reconstructing the energy spectrum of precipitating electrons developed on the basis of the Monte Carlo simulation of the processes of electron propagation in the atmosphere. The applicability of the technique to the accumulated experimental data is shown, and new results are presented for individual events recorded in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Agostinelli, S., Allison, J., Amako, K., et al., Geant4: A simulation toolkit, Nucl. Instrum. Meth. A, 2003, vol. 506, no. 3, pp. 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  2. Anderson, K.A., Soft radiation events at high altitude during the magnetic storm of August 29–30, 1957, Phys. Rev., 1958, vol. 111, pp. 1397–1405. https://doi.org/10.1103/PhysRev.111.1397

    Article  Google Scholar 

  3. Arsenovic, P., Rozanov, E., Stenke, A., Funke, B., Wissing, J., Mursula, K., et al., The influence of middle range energy electrons on atmospheric chemistry and regional climate, J. Atmos. Sol.-Terr. Phys., 2016, vol. 149, pp. 180–190. https://doi.org/10.1016/j.jastp.2016.04.008

    Article  Google Scholar 

  4. Bazilevskaya, G.A. and Svirzhevskaya, A.K., On the stratospheric measurements of cosmic rays, Space Sci. Rev., 1998, vol. 85, pp. 431–521.

    Article  Google Scholar 

  5. Bazilevskaya, G.A., Krainev, M.B., Stozhkov, Yu.I., Svirzhevskaya, A.K., and Svirzhevsky, N.S., Long-term soviet program for the measurement of ionizing radiation in the atmosphere, J. Geomagn. Geoelectr., 1991, vol. 43 (Suppl.), pp. 893–900. https://doi.org/10.5636/jgg.43.Supplement2_893

    Article  Google Scholar 

  6. Bazilevskaya, G.A., Kalinin, M.S., Krainev, M.B., Makhmutov, V.S., Stozhkov, Y.I., Svirzhevskaya, A.K., Svirzhevsky, N.S., and Gvozdevsky, B.B., Temporal characteristics of energetic magnetospheric electron precipitation as observed during long-term balloon observations, J. Geophys. Res.: Space, 2020, vol. 125, no. 11, p. e28033. https://doi.org/10.1029/2020JA028033

    Article  Google Scholar 

  7. Bazilevskaya, G.A., Dyusembekova, A.S., Kalinin, M.S., Krainev, M.B., Makhmutov, V.S., Svirzhevskaya, A.K., Svirzhevsky, N.S., Stozhkov, Yu.I., and Tulekov, E.A., Comparison of the results on precipitation of high-energy electrons in the stratosphere and on satellites, Cosmic Res., 2021, vol. 59, no. 1, pp. 24–29. https://doi.org/10.1134/S0010952521010020

    Article  Google Scholar 

  8. Charakhchyan, A.N., Investigation of stratosphere cosmic ray intensity fluctuations induced by processes on the Sun, Phys.-Usp., 1964, vol. 83, pp. 35–62.

    Google Scholar 

  9. Grankin, D., Mironova, I., Bazilevskaya, G., Rozanov, E., and Egorova, T., Atmospheric response to EEP during geomagnetic disturbances, Atmosphere, 2023, vol. 14, no. 2, p. 273. https://doi.org/10.3390/atmos14020273

    Article  Google Scholar 

  10. https://ruscosmics.ru/ FIANRSCSM/.

  11. https://satdat.ngdc.noaa.gov/sem/poes/data/.

  12. https://www.cern.ch/geant4.

  13. Lazutin, L.L., Khrushchinsky, A.A., Kozelova, T.V., et al., SAMBO-GEOS: On three-dimensional substorm dynamics: A case study for 4 March 1979, Adv. Space Res., 1985, vol. 5, no. 4, pp. 171–174. https://doi.org/10.1016/0273-1177(85)90134-6

    Article  Google Scholar 

  14. Makhmutov, V.S., Bazilevskaya, G.A., Krainev, M.B., and Storini, M., Long-term cosmic ray experiment in the atmosphere: energetic electron precipitation events during the 20–23 solar activity cycles, in Proc. 27th Int. Cosmic Ray Conf., Hamburg, 2001, pp. 4196–4199.

  15. Makhmutov, V.S., Bazilevskaya, G.A., Desorgher, L., and Flückiger, E., Precipitating electron events in October 2003 as observed in the polar atmosphere, Adv. Space Res., 2006, vol. 38, no. 8, pp. 1642–1646. https://doi.org/10.1016/j.asr.2006.01.016

    Article  Google Scholar 

  16. Makhmutov, V.S., Bazilevskaya, G.A., Stozhkov, Y.I., Svirzhevskaya, A.K., and Svirzhevsky, N.S., Catalogue of electron precipitation events as observed in the long-duration cosmic ray balloon experiment, J. Atmos. Sol.-Terr. Phys., 2016, vol. 149, pp. 258–276. https://doi.org/10.1016/j.jastp.2015.12.006

    Article  Google Scholar 

  17. Maurchev, E.A., Mikhalko, E.A., Germanenko, A.V., Balabin, Yu.V., and Gvozdevsky, B.B., RUSCOSMICS software package as a tool for estimating the earth’s atmosphere ionization rate by cosmic ray protons, Bull. Russ. Acad. Sci. Phys., 2019, vol. 83, no. 5, pp. 653–656. https://doi.org/10.3103/S1062873819050241

    Article  Google Scholar 

  18. Maurchev, E.A., Baltabin, Yu.V., Germanenko, A.V., and Gvozdevsky, B.B., Modeling the transport of solar cosmic ray proton fluxes through Earth’s atmosphere for the GLE42 and GLE44 events, Bull. Russ. Acad. Sci. Phys., 2021a, vol. 85, pp. 273–276. https://doi.org/10.3103/S1062873821030151

    Article  Google Scholar 

  19. Maurchev, E.A., Balabin, Yu.V., Germanenko, A.V., Mikhalko, E.A., and Gvozdevsky, B.B., Calculating the rate of ionization during a GLE event with a global model of Earth’s atmosphere and estimating of the contribution to this process from galactic cosmic ray particles with Z > 2, Bull. Russ. Acad. Sci. Phys., 2021b, vol. 85, pp. 277–281. https://doi.org/10.3103/S1062873821030163

    Article  Google Scholar 

  20. Maurchev, E.A., Mikhalko, E.A., Balabin, Yu.V., Germanenko, A.V., and Gvozdevsky, B.B., Estimated equivalent radiation dose at different altitudes in Earth’s atmosphere, Sol.-Terr. Phys., 2022, vol. 8, no. 3, pp. 27–31. https://doi.org/10.12737/stp-83202204

    Article  Google Scholar 

  21. Millan, R.M., McCarthy, M.P., Sample, J.G., et al., The balloon array for RBSP relativistic electron losses (BARREL), Space Sci. Rev., 2013, vol. 179, pp. 503–530. https://doi.org/10.1007/s11214-013-9971-z

    Article  Google Scholar 

  22. Mironova, I., Artamonov, A., Bazilevskaya, G., Rozanov, E., Makhmutov, V., Mishev, A., and Karagodin, A., Ionization of the polar atmosphere by energetic electron precipitation retrieved from balloon measurements, Geophys. Res. Lett., 2019, vol. 46, pp. 990–996. https://doi.org/10.1029/2018GL079421

    Article  Google Scholar 

  23. Picone, J.M., Hedin, A.E., Drob, D.P., and Aikin, A.C., NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 2002, vol. 107, no. A12, pp. SIA15-1–SIA16. https://doi.org/10.1029/2002JA009430

  24. Sinnhuber, M., Nieder, H., and Wieters, N., Energetic particle precipitation and the chemistry of the mesosphere/lower thermosphere, Surv. Geophys., 2012, vol. 33, pp. 1281–1334. https://doi.org/10.1007/s10712-012-9201-3

    Article  Google Scholar 

  25. Stozhkov, Y.I., Svirzhevsky, N.S., Bazilevskaya, G.A., Kvashnin, A.N., Makhmutov, V.S., and Svirzhevskaya, A.K., Long-term (50 years) measurements of cosmic ray fluxes in the atmosphere, Adv. Space Res., 2009, vol. 44, no. 10, pp. 1124–1137. https://doi.org/10.1016/j.asr.2008.10.038

    Article  Google Scholar 

  26. Winckler, J.R., Bhavsar, P.D., and Anderson, K.A., A study of the precipitation of energetic electrons from the geomagnetic field during magnetic storms, J. Geophys. Res., 1962, vol. 67, no. 10, pp. 3717–3735. https://doi.org/10.1029/JZ067i010p03717

    Article  Google Scholar 

  27. Woodger, L.A., Halford, A.J., Millan, R.M., et al., A summary of the barrel campaigns: Technique for studying electron precipitation, J. Geophys. Res.: Space, 2015, vol. 120, pp. 4922–4935. https://doi.org/10.1002/2014JA020874

    Article  Google Scholar 

Download references

5. ACKNOWLEDGMENTS

We thank the researchers who provide data from the POES satellite on electron fluxes via the Internet (https://satdat.ngdc.noaa.gov/sem/poes/data/).

Funding

This work was carried out under a grant from the Russian Foundation for Basic Research (grant no. 20-55-12020), the Deutsche Forschungsgemeinschaft (grant no. SI 1088/7-1). G.A. Bazilevskaya and I.A. Mironova were supported by a grant from the Russian Foundation for Basic Research (grant no. 22-62-00048).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. S. Makhmutov, E. A. Maurchev, G. A. Bazilevskaya or I. A. Mironova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhmutov, V.S., Maurchev, E.A., Bazilevskaya, G.A. et al. Development of a Method for Recovery of the Energy Spectra of Precipitating Electrons from the Data of Measurements in the Atmosphere. Geomagn. Aeron. 63, 602–607 (2023). https://doi.org/10.1134/S0016793223600479

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600479

Navigation