Log in

Geochemistry of Trace Elements in Minerals of Porphyritic and Nonporphyritic Chondrules from Equilibrated Ordinary Chondrites

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents the results of SIMS and EPMA studies of silicate minerals and bulk compositions (SEM-EDS) of porphyritic and nonporphyritic chondrules from equilibrated ordinary chondrites. The trace-element distribution in olivine, low-Ca pyroxene, and mesostasis of porphyritic and nonporphyritic chondrules in the equilibrated ordinary chondrites reflects heterogeneous conditions of chondrule-forming processes in the protoplanetary disk and provides insight in their evolution. The porphyritic chondrules are composed of olivine with the low content of Y and Yb relative to nonporphyritic chondrules. The enrichment of low-Ca pyroxene from porphyritic chondrules in trace elements correlates with the amount of pyroxene in the chondrule. Olivine composition in granular chondrules is close to that of porphyritic chondrules, but low-Ca pyroxene is distinguished by the high content of Y, Ti, Sr, Ba, V, and REE compared to all other chondrules. Barred chondrules are characterized by olivine enriched in trace elements (Zr, Y, Ti, Ba, Cr, and HREE) and low-Ca pyroxene highly depleted in trace elements (Zr, Y, Nb). The pyroxene of radial chondrules is enriched in Nb, Sr, and Ba. Trace elements in olivine and low-Ca pyroxene indicate the formation of the porphyritic and granular chondrules in a stable region of the protoplanetary disk, which is responsible for low-temperature heating and slow cooling of a chondrule. Trace element enrichment of olivine from the barred chondrules testifies strong heating of a precursor material and rapid cooling of the chondrule melt. Mineral composition of radial chondrules demonstrate rapid cooling of a low-temperature melt depleted in Mg and trace elements. High melt temperatures of barred chondrules and rapid cooling of nonporphyritic chondrules indicate their formation in an unstable region of the protoplanetary disk. Trace elements in silicate minerals of porphyritic and nonporphyritic chondrules reflect their formation as a result of melting of precursor minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Y. Amelin and A. Krot, “Pb isotopic age of the Allende chondrules,” Meteorit. Planet. Sci. 42 (7–8), 1321–1335 (2007).

    Article  Google Scholar 

  2. V. Batanova, G. Suhr, and A. Sobolev, “Origin of geochemical heterogeneity in the mantle peridotites from the Bay of Islands ophiolite, Newfoundland, Canada: ion probe study of clinopyroxenes,” Geochim. Cosmochim. Acta 62 (5), 853–866 (1998).

    Article  Google Scholar 

  3. A. Bischoff, M. Schleiting, R. Wieler, and M. Patzek, “Brecciation among 2280 ordinary chondrites – Constraints on the evolution of their parent bodies,” Geochim. Cosmochim. Acta 238, 516–541 (2018).

    Article  Google Scholar 

  4. Chondrule Records of Protoplanetary Disk Processes, Ed. by S. S. Russell, H. C. Connolly Jr, and A. N. Krot (Cambridge University Press, 2018).

    Google Scholar 

  5. J. N. Connelly, M. Bizzarro, A. N. Krot, Å. Nordlund, D. Wielandt, and M. A. Ivanova, “The absolute chronology and thermal processing of solids in the solar protoplanetary disk,” Science 338 (6107), 651–655 (2012).

    Article  Google Scholar 

  6. R. T. Dodd and R. Hutchison, Meteorites: A Petrologic, Chemical and Isotopic Synthesis (Cambridge University Press, 2004).

    Google Scholar 

  7. A. Engler, M. E. Varela, G. Kurat, D. Ebel, and P. Sylvester, “The origin of non-porphyritic pyroxene chondrules in UOCs: Liquid solar nebula condensates?,” 192 (1), 248–286 (2007).

  8. J. L. Gooding, K. Keil, T. Fukuoka, and R. A. Schmitt, “Elemental abundances in chondrules from unequilibrated chondrites: evidence for chondrule origin by melting of pre-existing materials,” Earth Planet. Sci. Lett. 50 (1), 171–180 (1980).

    Article  Google Scholar 

  9. R. Hewins, H. Connolly, Jr G. Lofgren, and G. Libourel, “Experimental constraints on chondrule formation,” Chondrites and the Protoplanetary disk, ASP Conf. Series, 341, 286 (2005).

  10. W. Hsu and G. Crozaz, “Mineral chemistry and the origin of enstatite in unequilibrated enstatite chondrites,” Geochim. Cosmochim. Acta 62 (11), 1993–2004 (1998).

    Article  Google Scholar 

  11. E. Jacquet, O. Alard, and M. Gounelle, “Trace element geochemistry of ordinary chondrite chondrules: The type I/type II chondrule dichotomy,” Geochim. Cosmochim. Acta 155, 47–67 (2015).

    Article  Google Scholar 

  12. R. H. Jones, J. N. Grossman, and A. E. Rubin, “Chemical, mineralogical and isotopic properties of chondrules: Clues to their origin,” Chondrites and the Protoplanetary Disk, ASP Conf. Series 341, 251 (2005).

  13. A. K. Kennedy, G. E. Lofgren, and G. J. Wasserburg, “An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules: equilibrium values and kinetic effects,” Earth Planet. Sci. Lett. 115 (1–4), 177–195 (1993).

    Article  Google Scholar 

  14. A. N. Krot, A. Meibom, M. K. Weisberg, and K. Keil, “The CR chondrite clan: Implications for early solar system processes,” Meteorit. Planet. Sci. 37 (11), 1451–1490 (2002).

    Article  Google Scholar 

  15. A. N. Krot, K. Nagashima, G. Libourel, and K. E. Miller, “Multiple mechanisms of transient heating events in the protoplanetary disk: evidence from precursors of chondrules and igneous Ca, Al-rich inclusions,” In: Chondrules: Records of Protoplanetary Disk Processes, Ed. by S. S. Russell, H. C. Connolly, Jr., and A. N. Krot (Cambridge University Press, 2018), pp. 11–56.

    Google Scholar 

  16. G. Libourel and A. N. Krot, “Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin,” Earth Planet. Sci. Lett. 254 (1–2), 1–8 (2007).

    Article  Google Scholar 

  17. C. E. Nehru, M. K. Weisberg, and M. Prinz, “Porphyritic versus nonporphyritic chondrules,” Conference on Chondrules and the Protoplanetary Disk (1994), pp. 26–27.

  18. A. Nosova, V. Narkisova, L. Sazonova, and S. Simakin, “Minor elements in clinopyroxene from Paleozoic volcanics of the Tagil island arc in the Central Urals,” Geochem. Int. 40 (3), 219–232 (2002).

    Google Scholar 

  19. J. Oulton, M. Humayun, A. Fedkin, and L. Grossman, “Chemical evidence for differentiation, evaporation and recondensation from silicate clasts in Gujba,” Geochim. Cosmochim. Acta 177, 254–274 (2016).

    Article  Google Scholar 

  20. H. Palme, K. Lodders, and A. Jones, “Solar system abundances of the elements,” In: Treatise on Geochemistry. Volume 2. Planets, Asteriods, Comets and the Solar System, 2nd Edition, Ed. by A. M. Davis (Elsevier, 2014), pp. 15–36.

  21. M. Portnyagin, R. Almeev, S. Matveev, and F. Holtz, “Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma,” Earth Planet. Sci. Lett. 272 (3–4), 541–552 (2008).

    Article  Google Scholar 

  22. P. M. Radomsky and R. H. Hewins, “Formation conditions of pyroxene-olivine and magnesian olivine chondrules.,” Geochim. Cosmochim. Acta 54 (12), 3475–3490 (1990).

    Article  Google Scholar 

  23. D. Ray, S. Ghosh, T. K. Goswami, and M. J. Jobin, “Insights into chondrule formation process and shock-thermal history of the Dergaon chondrite (H4-5), Geosci. Frot. 8 (3), 413–423 (2017).

    Google Scholar 

  24. T. Saito, H. Shimizu, and A. Masuda, “Experimental study of major and trace element partitioning among olivine, metallic phase and silicate melt using chondrite as starting material: Implication for V-shaped REE patterns of the pallasite meteorites,” Geochim. Cosmochim. Acta 32 (3), 159–182 (1998).

    Google Scholar 

  25. K. G. Sukhanova, Extended Abstract of Camdidate’s Dissertation in Geology and Mineralogy (Inst. Geol. Geokhronol. Dokembriya RAN, St. Petersburg, 2022) [in Russian].

  26. K. G. Sukhanova, S. G. Skublov, O. L. Galankina, E. V. Obolonskaya, and E. L. Kotova “Trace elements in pyroxene of radial chondrules of ordinary equilibrated chondrites,” Physicochemical and Petrophysical Studies in Earth’s Science (2019), pp. 320–323 [in Russian].

    Google Scholar 

  27. K. G. Sukhanova, S. G. Skublov, O. L. Galankina, E. V. Obolonskaya, and E. L. Kotova, “Trace element composition of silicate minerals in the chondrules and matrix of the Buschhof meteorite,” Geochem. Int. 58 (12), 1321–1330 (2020).

    Article  Google Scholar 

  28. T. J. Tenner, D. Nakashima, T. Ushikubo, N. T. Kita, and M. K. Weisberg, “Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H2O during chondrule formation,” Geochim. Cosmochim. Acta 148, 228–250 (2015).

    Article  Google Scholar 

  29. M. E. Varela, “Bulk trace elements of Mg-rich cryptocrystalline and ferrous radiating pyroxene chondrules from Acfer 182: Their evolution paths,” Geochim. Cosmochim. Acta 257, 1–15 (2019).

    Article  Google Scholar 

  30. M. E. Varela, P. Sylvester, A. Engler, and G. Kurat, “Nonporphyritic chondrules from equilibrated Rumuruti and ordinary chondrites: chemical evidence of secondary processing,” Meteorit. Planet. Sci. 47 (10), 1537–1557 (2012).

    Article  Google Scholar 

  31. M. E. Varela, P. Sylvester, F. Brandstätter, and A. Engler, “Nonporphyritic chondrules and chondrule fragments in enstatite chondrites: Insights into their origin and secondary processing,” Meteorit. Planet. Sci. 50 (8), 1338–1361 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S.G. Simakin and E.V. Potapov (Yaroslavl Branch of the Valiev Institute of Physics and Technology, Russian Academy of Sciences) for analytical works.

Funding

The study was supported by government-financed project no. FMUW-2022-0005 for the Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. G. Sukhanova or S. G. Skublov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhanova, K.G., Skublov, S.G., Galankina, O.L. et al. Geochemistry of Trace Elements in Minerals of Porphyritic and Nonporphyritic Chondrules from Equilibrated Ordinary Chondrites. Geochem. Int. 61, 468–483 (2023). https://doi.org/10.1134/S0016702923050075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923050075

Keywords:

Navigation