Log in

Transfer of Metals under Hydrothermal Conditions in the Form of Colloidal Particles and Supersaturated True Solutions

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

Colloids of metals have been studied much more poorly in hydrothermal solutions than in surface and underground waters. Nevertheless, literature data indicate that colloidal particles containing metals are present in hydrothermal minerals, in geogas, in groundwaters above orebodies, in fluid inclusions of minerals, and in geothermal solutions. These particles are usually thought to be formed at nucleation in supersaturated solution, which is generated in conversion reactions of minerals or when fluids boil. Published experimental data confirm that colloidal particles can be formed and preserved in hydrothermal conditions. Experimental data on the filtration of supersaturated and colloidal solutions in porous media at elevated temperatures are still too scarce to enable a comprehensive and reasonably accurate assessment of the mobility of colloidal particles under these conditions. The involvement of colloids in the hydrothermal ore-forming process is most clearly manifested at formation of rich epithermal Au deposits. The example of a quartz geothermometer is employed to demonstrate that metals can be transferred in true supersaturated solution, and this mechanism may be even more efficient than colloidal transfer. Metals can thus be transferred in the hydrothermal process in significantly higher concentrations than it follows from the traditional approach based on equilibrium thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. A. Abdelali, I. E. Nezli, R. Kechiched, S. Attalah, S. A. Benhamida, and Z. Pang, “Geothermometry and geochemistry of groundwater in the Continental Intercalaire aquifer, southeastern Algeria: Insights from cations, silica and SO4–H2O isotope geothermometers,” Appl. Geochem. 113, art. no. 104492 (2020).

    Article  Google Scholar 

  2. Y. F. Adrian, U. Schneidewind, S. A. Bradford, J. Šimůnek, E. Klumpp, and R. Azzam, “Transport and retention of engineered silver nanoparticles in carbonate-rich sediments in the presence and absence of soil organic matter,” Environ. Pollut. 255, art. no. 113124 (2019).

    Article  Google Scholar 

  3. V. A. Alekseyev, “Kinetic characteristics of the Na/K geothermometer operation,” Geochem. Int. 35 (11), 997–1006 (1997).

    Google Scholar 

  4. V. A. Alekseyev, “Nanoparticles and nanofluids in water–rock interactions,” Geochem Int. 57 (4), 357–368 (2019).

    Article  Google Scholar 

  5. A. P. Aleshin, V. D. Kozyrkov, K. M. Smirnov, Vl. B. Komarov, M. M. Ivenchenko, Vik. B. Komarov, and I. G. Griboedova, “Uranium–titanium metahelium mineralization of gold deposits of the Elkon ore district (Aldan) and features of its technological reworking,” Izv. Vyssh. Ucheb. Zaved., Geol. Razved., No. 4, 50–57 (2016).

  6. S. Arnórsson, “Application of the silica geothermometer in low temperature hydrothermal areas in Iceland,” Am. J. Sci. 275 (7), 763–784 (1975).

    Article  Google Scholar 

  7. M. Baalousha, J. R. Lead, and Y. Ju-Nam, “Natural colloids and manufactured nanoparticles in aquatic and terrestrial systems,” Treatise on Water Sci. 3, 89–129 (2011).

    Article  Google Scholar 

  8. B. Bai, Q. Nie, Y. Zhang, X. Wang, and W. Hu, “Cotransport of heavy metals and SiO2 particles at different temperatures by seepage,” J. Hydrol. 597, art. no. 125771 (2021).

    Article  Google Scholar 

  9. D. A. Banks, G. Bozkaya, and O. Bozkaya, “Direct observation and measurement of Au and Ag in epithermal mineralizing fluids,” Ore Geol. Rev. 111, art. no. 102955 (2019).

    Article  Google Scholar 

  10. I. Barton, “The effects of temperature and pressure on the stability of mineral colloids,” Amer. J. Sci. 319 (9), 737–753 (2019).

    Article  Google Scholar 

  11. G. Bin, X. Cao, Y. Dong, Y. Luo, and L. Q. Ma, “Colloid deposition and release in soils and their association with heavy metals,” Crit. Rev. Environ. Sci. Technol. 41 (4), 336–372 (2011).

    Article  Google Scholar 

  12. J. Cao, R. Hu, Z. Liang, and Z. Peng, “TEM observation of geogas-carried particles from the Changkeng concealed gold deposit, Guangdong Province, South China,” J. Geochem. Explor. 101 (3), 247–253 (2009).

    Article  Google Scholar 

  13. S. Carroll, E. Mroczek, M. Alai, and M. Ebert, “Amorphous silica precipitation (60 to 120°C): Comparison of laboratory and field rates,” Geochim. Cosmochim. Acta, 62 (8), 1379–1396 (1998).

    Article  Google Scholar 

  14. F. V. Chukhrov, “Present views on colloids in ore formation,” Int. Geol. Rev. 8 (3), 336–345 (1966).

    Article  Google Scholar 

  15. J. R. Clark and A. E. Williams–Jones, “Analogues of epithermal gold-silver deposition in geothermal well scales,” Nature. 346 (6285), 644–645 (1990).

    Article  Google Scholar 

  16. J. S. Cline, R. J. Bodnar, and J. D. Rimstidt, “Numerical simulation of fluid flow and silica transport and deposition in boiling hydrothermal solutions; application to epithermal gold deposits,” J. Geophys. Res. 97 (B6), 9085–9103 (1992).

    Article  Google Scholar 

  17. L. Cotte, M. Waeles, B. Pernet-Coudrier, P.-M. Sarradin, Cé. Cathalot, and R. D. Riso, “A comparison of in situ vs. ex situ filtration methods on the assessment of dissolved and particulate metals at hydrothermal vents,” Deep-Sea Res. Part I. Oceanogr. Res. Pap. 105, 186–194 (2015).

    Article  Google Scholar 

  18. X. Cui, Y. Fan, H. Wang, and S. Huang, “Effects of temperature on the transport of suspended particles through sand layer during groundwater recharge,” Water Air Soil Pollut. 230 (10), art. no. 251 (2019).

    Article  Google Scholar 

  19. A. P. Deditius, S. Utsunomiya, M. Reich, S. E. Kesler, R. C. Ewing, R. Hough, and J. Walshe, “Trace metal nanoparticles in pyrite,” Ore Geol. Rev. 42 (1), 32–46 (2011).

    Article  Google Scholar 

  20. C. Degueldre, I. Triay, J.-I. Kim, P. Vilks, M. Laaksoharju, and N. Miekeley, “Groundwater colloid properties: a global approach,” Appl. Geochem. 15 (7), 1043–1051 (2000).

    Article  Google Scholar 

  21. M. I. Dinu and V. M. Shkinev, “Complexation of metal ions with organic substances of humus nature: methods of study and structural features of ligands, and distribution of elements between species,” Geochem Int. 58 (2), 200–211 (2020).

    Article  Google Scholar 

  22. C. Dixit, Etude Physico-chimique des Fluides Produits par la Centrale Géothermique de Bouillante (Guadeloupe) et des Dépôts Susceptibles de se Former au Cours de leur Refroidissement, Ph.D. Thesis (Antilles–Guyane University, 2014).

  23. C. Dixit, M.-L. Bernard, B. Sanjuan, L. André, and S. Gaspard, “Experimental study on the kinetics of silica polymerization during cooling of the Bouillante geothermal fluid (Guadeloupe, French West Indies),” Chem. Geol. 442, 97–112 (2016).

    Article  Google Scholar 

  24. F. J. Doucet, J. R. Lead, and P. H. Santschi, “Colloid-trace element interactions in aquatic systems,” In: Environmental Colloids and Particles: Behaviour, Separation and Characterisation, Ed. by K. J. Wilkinson and J. R. Lead (IUPAC, 2007), pp. 95–157.

    Google Scholar 

  25. V. M. Durán-Toro, R. E. Price, M. Maas, C.-C. Brombach, T. Pichler, K. Rezwan, and S. I. Bühring, “Amorphous arsenic sulfide nanoparticles in a shallow water hydrothermal system,” Mar. Chem. 211, 25–36 (2019).

    Article  Google Scholar 

  26. Yu. M. Dymkov, A. S. Saltykov, G. A. Kolpakov, D. I. Krinov, A. P. Aleshin, O. D. Khorozova, and V. I. Prokopchik, “Metacolloid pyrite–pitchblende veinlets of high-grade hydrothermal ores at the Dalmatovskoe uranium deposit, Transural Region, Russia: new data on the mineralogy, geochemistry, age, and uranium sources,” Geochem Int. 52 (5), 372–387 (2014).

    Article  Google Scholar 

  27. A. J. Findlay, A. Gartman, T. J. Shaw, and G. W. Luther, III “Trace metal concentration and partitioning in the first 1.5m of hydrothermal vent plumes along the Mid-Atlantic Ridge: TAG, Snakepit, and Rainbow,” Chem. Geol. 412, 117–131 (2015).

    Article  Google Scholar 

  28. M. Flury and S. Aramrak, “Role of air-water interfaces in colloid transport in porous media: A review,” Water Resour. Res. 53 (7), 5247–5275 (2017).

    Article  Google Scholar 

  29. R. O. Fournier and J. J. Rowe, “Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells,” Am. J. Sci. 264 (9), 685–697 (1966).

    Article  Google Scholar 

  30. R. O. Fournier and R. W. Potter, “A revised and expanded silica (quartz) geothermometer,” Geotherm. Resour. Council. Bull. 11, 3–12 (1982).

    Google Scholar 

  31. A. P. G. Fowler, C. Ferguson, C. A. Cantwell, R. A. Zierenberg, J. McClain, N. Spycher, and P. Dobson, “A conceptual geochemical model of the geothermal system at Surprise Valley, CA,” J. Volcanol. Geotherm. Res. 353, 132–148 (2018).

    Article  Google Scholar 

  32. M. Franchini, C. McFarlane, L. Maydagán, M. Reich, D. R. Lentz, L. Meinert, and V. Bouhier, “Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: textural features and metal zoning at the porphyry to epithermal transition,” Ore Geol. Rev. 66, 366–387 (2015).

    Article  Google Scholar 

  33. C. Frondel, “Stability of colloidal gold under hydrothermal conditions,” Econ. Geol. 33 (1), 1–20 (1938).

    Article  Google Scholar 

  34. A. Gartman, A. J. Findlay, and G. W. Luther, “Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions,” Chem. Geol. 366, 32–41 (2014).

    Article  Google Scholar 

  35. A. Gartman, M. Hannington, J. W. Jamieson, B. Peterkin, D. Garbe-Schönberg, A. J. Findlay, S. Fuchs, and T. Kwasnitschka, “Boiling-induced formation of colloidal gold in black smoker hydrothermal fluids,” Geology 46 (1), 39–42 (2018).

    Article  Google Scholar 

  36. A. Gartman, A. J. Findlay, M. Hannington, D. Garbe-Schönberg, J. W. Jamieson, and T. Kwasnitschka, “The role of nanoparticles in mediating element deposition and transport at hydrothermal vents,” Geochim. Cosmochim. Acta 261, 113–131 (2019).

    Article  Google Scholar 

  37. M. Gavrilescu, “Colloid-mediated transport and the fate of contaminants in soils,” In: The Role of Colloidal Systems in Environmental Protection, Ed. by M. Fanun (Elsevier, 2014), pp. 397–451.

    Google Scholar 

  38. R. B. Glover and E. K. Mroczek, “Changes in silica chemistry and hydrology across the Rotorua Geothermal Field, New Zealand,” Geothermics. 27 (2), 183–196 (1998).

    Article  Google Scholar 

  39. J. M. González-Jiménez, L. Yesares, R. Piña, R. Sáez, Almodóvar G. R. de, F. Nieto, and S. Tenorio, “Polymetallic nanoparticles in pyrite from massive and stockwork ores of VMS deposits of the Iberian Pyrite Belt,” Ore Geol. Rev. 145, art. no. 104875 (2022).

    Article  Google Scholar 

  40. A. R. Hamilton, K. A. Campbell, J. V. Rowland, S. Barker, and D. Guido, “Characteristics and variations of sinters in the Coromandel Volcanic Zone: application to epithermal exploration,” New Zealand J. Geol. Geophys. 62 (4), 531–549 (2019).

    Article  Google Scholar 

  41. M. Hannington and D. Garbe-Schönberg, “Detection of gold nanoparticles in hydrothermal fluids,” Econ. Geol. 114 (2), 397–400 (2019).

    Article  Google Scholar 

  42. M. Hannington, V. Hardardóttir, D. Garbe–Schönberg, and K. L. Brown, “Gold enrichment in active geothermal systems by accumulating colloidal suspensions,” Nat. Geosci. 9 (4), 299–302 (2016).

    Article  Google Scholar 

  43. H. C. Helgeson, W. M. Murphy, and P. Aagaard, “Thermodynamic and kinetic constaints on reaction rates among minerals and aqueous solutions. II: Rate constants, effective surface area, and the hydrolysis of feldspar,” Geochim. Cosmochim. Acta. 48 (12), 2405–2432 (1984).

    Article  Google Scholar 

  44. C. L. Hoffman, S. L. Nicholas, D. C. Ohnemus, J. N. Fitzsimmons, R. M. Sherrell, C. R. German, M. I. Heller, J.-M. Lee, P. J. Lam, and B. M. Toner, “Near-field iron and carbon chemistry of non-buoyant hydrothermal plume particles, southern East Pacific Rise 15° S,” Mar. Chem. 201, 183–197 (2018).

    Article  Google Scholar 

  45. Y.-H. Huang, H.-L. Liu, S.-R. Song, and H. -F. Chen, “An ideal geothermometer in slate formation: A case from the Chingshui geothermal field, Taiwan,” Geothermics 74, 319–326 (2018).

    Article  Google Scholar 

  46. G. A. Icopini, S. L. Brantley, and P. J. Heaney, “Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength at 25°C,” Geochim. Cosmochim. Acta. 69 (2), 293–303 (2005).

    Article  Google Scholar 

  47. R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (Wiley, New York, 1979).

    Google Scholar 

  48. A. I. Ivaneev, M. S. Ermolin, and P. S. Fedotov, “Separation, characterization, and analysis of environmental nano- and microparticles: state-of-the-art methods and approaches,” J. Analyt. Chem. 76 (4), 413–429 (2021).

    Article  Google Scholar 

  49. B. Kai, N. **aojun, W. Weimin, W. **aojun, P. Yu, and B. Panchal, “Application of geothermal thermometric scale in the study of deep reservoir temperature,” Energy Explor. Exploit. 38 (6), 2618–2630 (2020).

    Article  Google Scholar 

  50. B. Kanimozhi, P. Rajkumar, R. S. Kumar, S. Mahalingam, V. Thamizhmani, A. Selvakumar, S. Ravikumar, R. Kesavakumar, and V. Pranesh, “Kaolinite fines colloidal–suspension transport in high temperature porous subsurface aqueous environment: Implications to the geothermal sandstone and hot sedimentary aquifer reservoirs permeability,” Geothermics. 89, art. no. 101975 (2021).

    Article  Google Scholar 

  51. O. N. Karasyova, L. I. Ivanova, L. Z. Lakshtanov, and L. Lövgren, “Strontium sorption on hematite at elevated temperatures,” J. Colloid Interface Sci. 220 (2), 419–428 (1999).

    Article  Google Scholar 

  52. O. N. Karaseva, L. I. Ivanova, and L. Z. Lakshtanov, “Strontium adsorption on manganese oxide (δ-MnO2) at elevated temperatures: experiment and modeling,” Geochem Int. 57 (10), 1107–1119 (2019).

    Article  Google Scholar 

  53. Y. Kawahara, D. Fukuda, F. Togoh, K. Osada, K. Maetou, O. Kato, T. Yokoyama, R. Itoi, and I. Myogan, “Laboratory experiments on prevention and dissolution of silica deposits in a porous column (1): Solid deposition due to silica particle aggregation and inhibition by acid dosing,” Trans. Geotherm. Resour. Counc. 36 (2), 867–870 (2012).

    Google Scholar 

  54. L. Z. Lakshtanov and S. L.S. Stipp, “Interaction between dissolved silica and calcium carbonate: 1. Spontaneous precipitation of calcium carbonate in the presence of dissolved silica,” Geochim. Cosmochim. Acta. 74 (9), 2655–2664 (2010).

    Article  Google Scholar 

  55. X. Liu, J. Cao, Y. Li, G. Hu, and G. Wang, “A study of metal-bearing nanoparticles from the Kangjiawan Pb-Zn deposit and their prospecting significance,” Ore Geol. Rev. 105, 375–386 (2019a).

    Article  Google Scholar 

  56. W. Liu, M. Chen, Y. Yang, Y. Mei, B. Etschmann, J. Brugger, and B. Johannessen, “Colloidal gold in sulphur and citrate-bearing hydrothermal fluids: an experimental study,” Ore Geol. Rev. 114, art. No 103142 (2019b).

    Article  Google Scholar 

  57. X. Liu, R. Liu, G. Chen, X. Luo, and M. Lu, “Natural HgS nanoparticles in sulfide minerals from the Hetai goldfield,” Environ. Chem. Lett. 18 (3), 941–947 (2020a).

    Article  Google Scholar 

  58. X. Liu, J. Cao, W. Dang, Z. Lin, and J. Qiu, “Nanoparticles in groundwater of the Qujia deposit, eastern China: Prospecting significance for deep-seated ore resources,” Ore Geol. Rev. 120, art. no. 103417 (2020b).

    Article  Google Scholar 

  59. S. Luo, J. Cao, H. Yan, and J. Yi, “TEM observations of particles based on sampling in gas and soil at the Dongshengmiao polymetallic pyrite deposit, Inner Mongolia, Northern China,” J. Geochem. Explor. 158, 95–111 (2015).

    Article  Google Scholar 

  60. I. Marinova, V. Ganev, and R. Titorenkova, “Colloidal origin of colloform-banded textures in the Paleogene low-sulfidation Khan Krum gold deposit, SE Bulgaria,” Mineral. Deposita. 49 (1), 49–74 (2014).

    Article  Google Scholar 

  61. D. F. McLeish, A. E. Williams–Jones, O. V. Vasyukova, J. R. Clark, and W. S. Board, “Colloidal transport and flocculation are the cause of the hyperenrichment of gold in nature,” Proc. Natl. Acad. Sci. USA. 118 (20), art. no. e2100689118 (2021).

    Article  Google Scholar 

  62. T. I. Moiseenko, M. I. Dinu, N. A. Gashkina, and T. A. Kremleva, “Occurrence forms of metals in natural waters depending on water chemistry,” Water Resour. 40 (4), 407–416 (2013).

    Article  Google Scholar 

  63. E. Mroczek, D. Graham, C. Siega, and L. Bacon, “Silica scaling in cooled silica saturated geothermal water: comparison between Wairakei and Ohaaki geothermal fields, New Zealand,” Geothermics 69, 145–152 (2017).

    Article  Google Scholar 

  64. E. K. Mroczek, S. P. White, and D. J. Graham, “Deposition of amorphous silica in porous packed beds – predicting the lifetime of reinjection aquifers,” Geothermics 29 (6), 737–757 (2000).

    Article  Google Scholar 

  65. S. I. Naboko, Volcanic Exhalations and Products of their Reactions (AN SSSR, Moscow, 1959) [in Russian].

    Google Scholar 

  66. S. I. Naboko and V. G. Silnichenko, “Formation of silicagel on solfataras of Golovnin Volcano, Kunashir Island,” Geokhimiya, no. 3, 253–256 (1957) ) [in Russian].

  67. J. H. Oehler, “Hydrothermal crystallization of silica gel,” Bull. Geol. Soc. Am. 87 (8), 1143–1152 (1976).

    Article  Google Scholar 

  68. S. Ohsawa, T. Kawamura, N. Takamatsu, and Y. Yusa, “Rayleigh scattering by aqueous colloidal silica as a cause for the blue color of hydrothermal water,” J. Volcanol. Geotherm. Res. 113 (1–2), 49–60 (2002).

    Article  Google Scholar 

  69. A. Okamoto, H. Saishu, N. Hirano, and N. Tsuchiya, “Mineralogical and textural variation of silica minerals in hydrothermal flow-through experiments: Implications for quartz vein formation,” Geochim. Cosmochim. Acta. 74 (13), 3692–3706 (2010).

    Article  Google Scholar 

  70. C. F. Park and R. A. MacDiarmid, Ore Deposits (Freeman, London, 1964).

    Google Scholar 

  71. V. Y. Prokofiev, V. S. Kamenetsky, S. L. Selektor, T. Rodemann, V. A. Kovalenker, and S. Z. Vatsadze, “First direct evidence for natural occurrence of colloidal silica in chalcedony-hosted vacuoles and implications for ore-forming processes,” Geology 45 (1), 71–74 (2017).

    Article  Google Scholar 

  72. V. Y. Prokofiev, D. A. Banks, K. V. Lobanov, S. L. Selektor, V. A. Milichko, N. N. Akinfiev, A. A. Borovikov, V. Lüders, and M. V. Chicherov, “Exceptional concentrations of gold nanoparticles in 1.7 Ga fluid inclusions from the Kola superdeep borehole, Northwest Russia,” Sci. Rep. 10 (1), art. no. 1108 (2020).

    Article  Google Scholar 

  73. A. Rezaei, M. Rezaeian, and S. Porkhial, “The hydrogeochemistry and geothermometry of the thermal waters in the Mouil Graben, Sabalan volcano, NW Iran,” Geothermics 78, 9–27 (2019).

    Article  Google Scholar 

  74. J. D. Rimstidt and H. L. Barnes, “The kinetics of silica–water reactions,” Geochim. Cosmochim. Acta. 44 (11), 1683–1699 (1980).

    Article  Google Scholar 

  75. V. I. Roldughin, “Quantum-size colloid metal systems,” Rus. Chem. Rev. 69 (10), 821–843 (2000).

    Article  Google Scholar 

  76. H. Sasamoto and S. Onda, “Preliminary results for natural groundwater colloids in sedimentary rocks of the horonobe underground research laboratory, Hokkaido,” Japan. Geol. Soc. Spec. Publ. 482 (1), 191–203 (2019).

    Article  Google Scholar 

  77. J. A. Saunders and M. Burke, “Formation and aggregation of gold (electrum) nanoparticles in epithermal ores,” Minerals. 7 (9), art. no. 163 (2017).

    Article  Google Scholar 

  78. J. A. Saunders, M. Burke, and M. E. Brueseke, “Scanning-electron-microscope imaging of gold (electrum) nanoparticles in middle Miocene bonanza epithermal ores from northern Nevada, USA,” Mineral. Deposita 55 (3), 389–398 (2020).

    Article  Google Scholar 

  79. T. K. Sen and K. C. Khilar, “Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media,” Adv. Colloid Interface Sci. 119 (2–3), 71–96 (2006).

    Article  Google Scholar 

  80. T. M. Seward, A. E. Williams-Jones, and A. A. Migdisov, “The chemistry of metal transport and deposition by ore-forming hydrothermal fluids,” In: Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier, 2014), pp. 29–57.

    Google Scholar 

  81. S. F. Simmons, K. L. Brown, and B. M. Tutolo, “Hydrothermal transport of Ag, Au, Cu, Pb, Te, Zn, and other metals and metalloids in New Zealand geothermal systems: spatial Patterns, fluid-mineral equilibria, and implications for epithermal mineralization,” Econ. Geol. 111 (3), 589–618 (2016).

    Article  Google Scholar 

  82. G. Sposito, “Surface complexation of metals by natural colloids,” In: Ion Exchange and Solvent Extraction: A Series of Advances, Ed. by J. A. Marinsky and Y. Marcus (Taylor & Francis, 2017), vol. 11, pp. 211–236.

    Google Scholar 

  83. B. D. Stewart, J. V. Sorensen, K. Wendt, J. B. Sylvan, C. R. German, K. Anantharaman, G. J. Dick, J. A. Breier, and B. M. Toner, “A multi–modal approach to measuring particulate iron speciation in buoyant hydrothermal plumes,” Chem. Geol. 560, art. no. 120018 (2021).

    Article  Google Scholar 

  84. R. Tamura, H. Inoue, E. Hanajima, R. Ikeda, Y. Osaka, T. Yanaze, M. Kusakabe, K. Yonezu, T. Yokoyama, K. Tsukamoto, K. Marumo, and A. Ueda, “In situ observations of silica nanoparticle growth in geothermal brine at the Sumikawa geothermal station, Japan, by dynamic light scattering,” Geothermics 77, 304–312 (2019).

    Article  Google Scholar 

  85. Q. Tang, P. Di, M. Yu, J. Bao, Y. Zhao, D. Liu, and Y. Wang, “Mineralogy and geochemistry of pyrite and arsenopyrite from the Zaozigou gold deposit in West Qinling orogenic belt, central China: Implications for ore genesis,” Resour. Geol. 69 (3), 314–332 (2019).

    Article  Google Scholar 

  86. M. P. Verma, “Chemical thermodynamics of silica: A critique on its geothermometer,” Geothermics 29 (3), 323–346 (2000).

    Article  Google Scholar 

  87. C. Wang, R. Wang, Z. Huo, E. **e, and H. E. Dahlke, “Colloid transport through soil and other porous media under transient flow conditions–A review,” Wiley Interdiscip. Rev: Water. 7 (4), art. no e1439 (2020).

  88. Y. Wang, M. Yu, Z. Bo, P. Bedrikovetsky, and F. Le-Hussain, “Effect of temperature on mineral reactions and fines migration during low–salinity water injection into Berea sandstone,” J. Pet. Sci. Eng. 202, art. no. 108482 (2021).

  89. D. E. White, W. W. Brannock, and K. J. Murata, “Silica in hot-spring waters,” Geochim. Cosmochim. Acta 10 (1–2), 27–59 (1956).

    Article  Google Scholar 

  90. L. A. Williams and D. A. Crerar, “Silica diagenesis, II. General mechanisms,” J. Sediment. Petrol. 55 (3), 312–321 (1985).

    Google Scholar 

  91. M. Zavarin, P. Zhao, C. Joseph, J. D. Begg, M. A. Boggs, Z. Dai, and A. B. Kersting, “Hydrothermal alteration of nuclear melt glass, colloid formation, and plutonium mobilization at the Nevada National Security Site, USA,” Environ. Sci. Technol. 53 (13), 7363–7370 (2019).

    Article  Google Scholar 

  92. L. Zhan, Y. Zhang, S. Zheng, Y. Zhang, B. Fan, P. Li, and Y. Zhang, “Crystallization kinetics of ammonium polyvanadate,” J. Cryst. Growth. 526, art. no. 125218 (2019).

    Article  Google Scholar 

  93. W. Zhang, X. Tang, N. Weisbrod, and Z. Guan, “A review of colloid transport in fractured rocks,” J. Mount. Sci. 9 (6), 770–787 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Alekseyev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseyev, V.A. Transfer of Metals under Hydrothermal Conditions in the Form of Colloidal Particles and Supersaturated True Solutions. Geochem. Int. 61, 630–642 (2023). https://doi.org/10.1134/S0016702923050026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923050026

Keywords:

Navigation