Log in

Crystallogenetic Causes of the Unique Shape of the Matryoshka Diamond: The Effect of Capturing a Diamond Inclusion of Twin Diamond Crystals

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The unusual shape of the Matryoshka diamond, which is a diamond crystal with a cavity containing a diamond crystal freely moving in it, continues to attract keen interest of many researchers in the context of its seemingly paradoxical origin for a mantle mineral. The discovery sparked lively discussions and multiple attempts to explain the nature of the unique shape of this crystal. A comprehensive mineralogical and crystallographic analysis of the unusual specimen, as well as other analogous diamond crystals, suggests that it was formed as a consequence of the mutual disorientation of the crystals during their growth and the presence of a twin of diamond subindividuals that formed both the core (inclusion) and the sheath (host) diamonds. The twinning planes (111) in the contacting crystals of the inclusion and the host were in a sub-perpendicular position to each other during their simultaneous growth. The captured diamond of the inclusion prevented the normal development of the diamond that became the host. The diamond host rapidly grew along the direction of its own twin boundary and constantly generated new growth layers, which eventually converged around the small captured twin crystal cluster during metric selection. Analysis of diamond crystals of similar shape from the Nyurbinskaya pipe and from elsewhere worldwide confirms the ontogenic model of their origin as a consequence of the capture of diamond inclusions that hampered the rapid growth of the twin crystal (spinel-law twins) in the direction of the twin boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. A. Abduriyim and M. Kitamura, “Growth morphology and change in growth conditions of a spinel-twinned natural diamond,” J. Cryst. Growth 8, 237–239 (2002).

    Google Scholar 

  2. Z. V. Bartoshinskii and V. N. Kvasnitsa, Crystal Morphology of Diamond from Kimberlites (Naukova dumka, Kiev, 1991) [in Russian].

    Google Scholar 

  3. V. V. Beskovanov, “On the possible mechanism of the formation of matryoshka-diamond,” Geology and Mineral Resources of Northeast Russia. Proc. 12th All-Russian Scientific-Practical Conference Dedicated to the 65th Anniversary of the Diamond and Precious Metal Geology Institute SO RAN, Yakutsk, Russia, 2022 (SVFU, Yakutsk, 2022), pp. 283–286.

  4. S. R. Boyd, I. Kiflawi, and G. S. Woods, “The relationship between infrared absorption and the A defect concentration in diamond,” Philos. Mag. 69 (6), 1149–1153 (1994).

    Article  Google Scholar 

  5. S. R. Boyd, I. Kiflawi, and G. S. Woods, “Infrared absorption by the B nitrogen aggregate in diamond,” Philos. Mag. 72, 351–361 (1995).

    Article  Google Scholar 

  6. A. Chepurov, V. Sonin, J.-M. Dereppe, E. Zhimulev, and A. Chepurov, “How do diamonds grow in metal melt together with silicate minerals? An experimental study of diamond morphology,” Eur. J. Mineral. 32, 41–55 (2020).

    Article  Google Scholar 

  7. B. V. Chesnokov, Relative Age of Mineral Individuals and Aggregates (Nedra, Moscow, 1974) [in Russian].

    Google Scholar 

  8. R. M. Chrenko, N. M. Strong, and R. E. Tuft, “Dispersed paramagnetic nitrogen content of large laboratory diamonds,” Philos. Mag. 23 (182), 313–318 (1971).

    Article  Google Scholar 

  9. G. Davies, “Aggregation of Nitrogen in Diamond,” Nature 228, 758 (1970).

    Article  Google Scholar 

  10. G. I. Dementeva, “On the induction surfaces on crystals,” Zap. Vsesoyuz. Mineral. O-va 92 (4), 420–433 (1963).

    Google Scholar 

  11. A. E. Fersman, “Elements of differentiation of two simultaneously crystallizing matters,” Dokl. Akad. Nauk SSSR, Ser. A, 7–8 (1922).

  12. A. E. Fersman, Diamond Crystallography (AN SSSR, Leningrad, 1955) [in Russian].

    Google Scholar 

  13. E. J. Field, The Properties of Diamond (Academic Press, London, 1979).

    Google Scholar 

  14. E. Fritsch, “Revealing the formation secrets of the Matryoshka diamond,” J. Gemmol. 37 (5), 528–533 (2021).

    Article  Google Scholar 

  15. P. Hartman, “On the morphology of growth twins,” Z. Krist. 107, 225–237 (1956).

    Article  Google Scholar 

  16. R. C. Kammerling, J. I. Koivula, M. L. Johnson, and E. Fritsch, “Gem news: diamond with mobile diamond inclusion,” Gems Gemol. 31 (3), 204 (1995).

    Article  Google Scholar 

  17. T. V. Kedrova, I. N. Bogush, N. N. Zinchuk, L. D. Bardukhinov, A. N. Lipashova, and V. P. Afanasev, “Diamond placers of the Nakyn kimberlite field,” Russ. Geol. Geophys. 63 (3), 245–254 (2022).

    Article  Google Scholar 

  18. A. D. Kharkiv, N. N. Zinchuk, and A. I. Kryuchkov, Bedrock Diamond Deposits of the World (Nedra, Moscow, 1998) [in Russian].

    Google Scholar 

  19. D. V. Konogorova, O. E. Kovalchuk, and L. D. Bardukhinov, “Unique diamond from the Nyurba pipe (Nakyn kimberlite field, Western Yakutia, Russia),” Prir. Resurs. Arkt. Subarkt. 25 (2), 45–55 (2020).

    Google Scholar 

  20. A. A. Kukharenko, Diamonds of the Urals (Gosgeoltekhizdat, Moscow, 1955) [in Russian].

    Google Scholar 

  21. Yu. L. Orlov, Diamond Mineralogy (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  22. A. D. Pavlushin, L. D. Bardukhinov, and D. V. Konogorova, “Unique diamonds: Chinese lantern,” Nauka Pervykh Ruk 92 (3/4), 44–53 (2021).

    Google Scholar 

  23. D. Quick, “World-first “Matryoshka diamond” found in Russia,” New Atlas, accessed December 15, 2020 (2019).

  24. N. Renfro and J. I. Koivula, “G&G Micro–World: Diamond with mobile green diamond inclusion,” Gems Gemol. 56 (1), 141 (2020).

    Google Scholar 

  25. I. I. Shafranovskii and D. P. Grigorev, “Contact surface of crystalline individuals,” Zap. Vsesoyuz. Mineral. O-va 77 (3), 185–193 (1948).

    Google Scholar 

  26. V. I. Shatalov, S. A. Grakhanov, A. N. Egorov, and Yu. V. Safyannikov, “Geological structure and diamond potential of ancient diamond placers of the Nakyn kimberlite field, Yakutian diamond province,” Vestn. Voronezhsk. Univ. Geol., No. 1, 185–201 (2002).

  27. E. M. Smith, S. B. Shirey, F. Nestola, E. S. Bullock, J. Wang, S. H. Richardson, and W. Wang “Large gem diamonds from metallic liquid in Earth’s deep mantle,” Science 354 (6318), 1403–1405 (2016).

    Article  Google Scholar 

  28. N. V. Sobolev, “On the nature of yellow color of diamond,” Geol. Geofiz., No. 12, 1518 (1969).

  29. E. V. Sobolev and V. I. Lisovain, “On nature of diamond properties of intermediate type,” Dokl. Akad. Nauk SSSR 204 (1), 88–90 (1972).

    Google Scholar 

  30. N. V. Sobolev, Yu. V. Seretkin, A. M. Logvinova, A. D. Pavlushin, and S. S. Ugapeva, “Crystallographic orientation and geochemical specifics of mineral inclusions in diamonds,” Russ. Geol. Geophys. 61 (5–6), 634–649 (2020).

    Article  Google Scholar 

  31. V. G. Vins and A. P. Eliseev, “Effect of annealing at high pressures and temperatures on the defect-admixture structure of natural diamonds,” Inorg. Mater. Appl. Res. 4, 303–310 (2010).

    Article  Google Scholar 

  32. Yu. K. Vorobev, Tendencies in the Growth and Evolution of Mineral Crystals (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  33. W. Wang, E. Yazawa, S. Persaud, E. Myagkaya, U. D’Haenens–Johansson, and T. M. Moses, “Lab Notes: formation of the “Matryoshka” diamond from Siberia,” Gems Gemol. 56 (1), 127–129 (2020).

    Google Scholar 

  34. A. M. Zaitsev, “Optical properties of diamond: A data handbook. Springer, Berlin Heidelberg, 502 (2001).

    Book  Google Scholar 

  35. A. M. Zaitsev, A. A. Gippius, and B. C. Vavilov, “Lyuminestsentsiya azotsoderzhashchikh primesno-defektnykh kompleksov v ionno-implantirovannykh sloyakh prirodnogo almaza. Fizika i tekhnika poluprovodnikov. 16(3), 397–403 (1982).

  36. E. I. Zhimulev, A. I. Chepurov, E. F. Sinyakova, V. M. Sonin, A. A. Chepurov, and N. P. Pokhilenko, “Diamond crystallization in the Fe–Co–S–C and Fe–Ni–S–C systems and the role of sulfide-metal melts in the genesis of diamond. Geochem. Int. 50(3), 205–216 (2012).

    Article  Google Scholar 

  37. N. N. Zinchuk and V. I. Koptil, “Tipomorfizm almazov Sibirskoi platformy. M.: Nedra, 603 s (2003).

Download references

AKNOWLEDGMENTS

The authors thank the following staff of PJSC ALROSA: Chief Expert L.A. Demidova; and geologists at the Vilyuiskaya Exploration Expedition L.D. Bardykhinov, T.V. Kedrova, I.V. Glushkova, A.N. Lipashova, and O.V. Danilova. We appreciate valuable comments on the manuscript provided by Dr. E.I. Zhemulev and Dr. A.A. Chepurov.

Funding

This study was carried out under government-financed research project for the Diamond and Precious Metal Geology Institute, Siberian Branch, Russian Academy of Sciences, and the curriculum of the post-graduate student at the Faculty of Geology of Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. D. Pavlushin or D. V. Konogorova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlushin, A.D., Konogorova, D.V. Crystallogenetic Causes of the Unique Shape of the Matryoshka Diamond: The Effect of Capturing a Diamond Inclusion of Twin Diamond Crystals. Geochem. Int. 61, 252–264 (2023). https://doi.org/10.1134/S0016702923030102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923030102

Keywords:

Navigation