Log in

Advanced Instruments for Identifying Geochemical Dependences of Radionuclide Migration in Natural Waters

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The geochemical dependences of the migration of natural radionuclides (U and Th) in different species are analyzed for the Semipalatinsk test site using methods of multivariate statistics. The region is distinguished by the wide diversity of geochemical environments and a large number of water bodies. A brief study of water geochemistry of the studied water bodies of the Semipalatinsk test site is reported, and the contents of natural radionuclides and proportions of their forms (suspended, colloidal and dissolved) are established. Differences in the migration of thorium and uranium in water bodies, streams, and minor water streams have been determined. It was found that the Ca/Mg, \({{{\text{SO}}_{4}^{{2 - }}} \mathord{\left/ {\vphantom {{{\text{SO}}_{4}^{{2 - }}} {{\text{C}}{{{\text{l}}}^{ - }}}}} \right. \kern-0em} {{\text{C}}{{{\text{l}}}^{ - }}}},\) and Th/U ratios serve as markers of geochemical processes in the studied waters. Non-parametric correlation analysis indicates that the major component ratios are good to use as a geochemical descriptors of thorium and uranium speciation. According to the discriminant analysis data, the suspended and colloid thorium species are indicators of colloidal transport. Factor and cluster analyses have revealed the paragenetic associations of major and trace components related to the uranium and thorium speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Y. V. Alekhin, E. A. Ivleva, S. M. Ilina, and L. Z. Lakshtanov, “Experimental fundamentals of the colloid hydrogeochemistry of continental runoff,” Geochem. Int. 58 (9), 1050–1060 (2020).

    Article  Google Scholar 

  2. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd Edition, Ed. by W. Stumm and J. J. Morgan (Wiley, New York, 1995).

    Google Scholar 

  3. M. F. Baalousha, V. D. Kammer, M. Motelica-Heino, M. Baborowski, C. Hofmeister, and P. Le Coustumer, “Size-based speciation of natural colloidal particles by flow field flow fractionation, inductively coupled plasma-mass spectroscopy, and transmission electron microscopy, X-ray energy dispersive spectroscopy: Colloids-trace element interaction,” Environ. Sci. Technol. 40 (7), 2156–2162 (2006).

    Article  Google Scholar 

  4. M. Baalousha, B. Stolpe, and J. R. Lead, “Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: A critical review,” J. Chromatogr. A. 1218 (27), 4078–4103 (2011).

    Article  Google Scholar 

  5. L. V. Bakhtin, I. V. Ivanova, E. Yu. Pestov, A. M. Romanov, “Differences in radionuclide migration in geological media,” Vestn. NYATs RK, 2, 146–149 (2017).

    Google Scholar 

  6. G. E. Batley, Trace Element Speciation Analytical Methods and Problems (CRC Press, 1989).

    Google Scholar 

  7. E. Bolea, M. P. Gorriz, M. Bouby, F. Laborda, J. R. Castilloa, and H. Geckeis, “Multielement characterization of metal-humic substances complexation by size exclusion chromatography, asymmetrical flow field-flow fractionation, ultrafiltration and inductively coupled plasma-mass spectrometry detection: A comparative approach,” J. Chromatogr. A. 1129 (2), 236–246 (2006).

    Article  Google Scholar 

  8. M. Bouby, H. Geckeis, and F. W. Geyer, “Application of asymmetric flow field-flow fractionation (AsFlFFF) coupled to inductively coupled plasma mass spectrometry (ICPMS) to the quantitative characterization of natural colloids and synthetic nanoparticles,” Anal. Bioanal. Chem. 392 (7–8), 1447–1457 (2008).

    Article  Google Scholar 

  9. M. Bouby, N. Finck, and H. Geckeis, “Flow field-flow fractionation (FlFFF) coupled to sensitive detection techniques: a way to examine radionuclide interactions with nanoparticles,” Mineral. Mag. 76 (7), 2709–2721 (2012).

    Article  Google Scholar 

  10. B. W. Cho, and O. C. Choo, “Geochemical behavior of uranium and radon in groundwater of Jurassic granite area, Icheon, Middle Korea,” Water 11, 1278 (2019).

    Article  Google Scholar 

  11. C. Claveranne-Lamolre, J. Aupiais, G. Lespes, J. Frayret, E. Pili, F. Pointurier, and M. Potin-Gautier, “Investigation of uranium-colloid interactions in soil by dual field-flow fractionation/capillary electrophoresis hyphenated with inductively coupled plasma-mass spectrometry,” Talanta 85 (5), 2504–2510 (2011).

    Article  Google Scholar 

  12. Complex of Scientific-Technical and Engineering Works to Bring the Former Semipalatinsk Test Site in a Safe State, Ed. by N. A. Nazarbaev, V. S. Shkol’nikov, E. G. Batyrbekov et al., (Nats. Yad. Ts. RK, Kurchatov, 2016) [in Russian].

  13. C. W. Cuss, M. W. Donner, I. Grant-Weaver, T. Noernberg, R. Pelletier, R. N. Sinnatamby, and W. Shotyk, “Measuring the distribution of trace elements amongst dissolved colloidal species as a fingerprint for the contribution of tributaries to large boreal rivers,” Sci. Total Environ. 642 (6), 1242–1251 (2018).

    Article  Google Scholar 

  14. C. W. Cuss, C. N. Glover, M. B. Javed, A. Nagel, and W. Shotyk, “Geochemical and biological controls on the ecological relevance of total, dissolved, and colloidal forms of trace elements in large boreal rivers: review and case studies,” Environ. Rev. 28, 138–163 (2020).

    Article  Google Scholar 

  15. C. Degueldre and M. J. Joyce, “Evidence and uncertainty for uranium and thorium abundance: A review,” Prog. Nucl. Energy. 124 (4), 103299 (2020).

    Article  Google Scholar 

  16. M. I. Dinu, “Geochemical features of element speciation in natural waters of the Valdai Rise (March–November, 2019),” Geochem. Int. 58 (12), 1379–1385 (2020).

    Article  Google Scholar 

  17. Environmental Colloids and Particles: Behavior, Separation and Characterization, Ed. by K. J. Wilkinson and J. R. Lead (John, Wiley & Sons, 2007).

    Google Scholar 

  18. S. M. Equeenuddin, S. Akhtar, F. Bastia, S. S. Rout, and P. J. Saikia, “Role of colloid in metal transport in river water around Jaduguda uranium mines, Singhbhum shear zone,” J. Earth Syst. Sci. 129 (1), (2020). https://doi.org/10.1007/s12040-019-1262-y

  19. I. M. Farnham, K. H. Johannesson, A. K. Singh, V. F. Hodge,and K. J. Stetzenbach “Factor analytical approaches for evaluating groundwater trace element chemistry data,” Anal. Chim. Acta. 490(1–2), 123–138 (2003).

    Article  Google Scholar 

  20. E. Gorbunova and S. Subbotin, “Study of radionuclide transport by underground water at the Semipalatinsk Test Site,” The New Uranium Mining Boom, Ed. by B. Merkel and M. Schipek (Springer, Berlin–Heidelberg, 2012), pp, 335–342.

  21. I. Gorlachev, P. Kharkin, M. Dyussembayeva, S. Lukashenko, G. Gluchshenko, L. Matiyenko, D. Zheltov, A. Kitamura, and N. Khlebnikov, “Comparative analysis of water contamination of the Shagan river at the Semipalatinsk test site with heavy metals and artificial radionuclides,” J. Env. Radioact. 213, 106110 (2020).

    Article  Google Scholar 

  22. P. V. Govenko, A. A. Amirov, and S. N. Lukashenko, “Study of mechanisms determining the trace-element composition of surface water streams of the Degelen mountains,” Semipalatinsk Test Site, Radiation Inheritance and Prospects for Development. Proc. 5th International Conference (2012), pp. 71–73.

  23. C. Graser, N. Banik, K. A. Bender, M. Lagos, C. M. Marquardt, V. Montoya, and H. Geckeis, “Sensitive redox speciation of iron, neptunium, and plutonium by capillary electrophoresis hyphenated to inductively coupled plasma sector field mass spectrometry,” Anal. Chem. 87, 9786–9794 (2015).

    Article  Google Scholar 

  24. R. Guillaumont, T. Fanghänel, J. Fuger, I. Grenthe, V. Neck, D. A. Palmer, and M. H. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Ed. by F. J. Mompean, (Elsevier Science, Michigan, 2003).

    Google Scholar 

  25. S. M. Ilina, S. A. Lapitskiy, Y. V. Alekhin, J. Viers, M. Benedetti, and O. S. Pokrovsky, “Speciation, size fractionation and transport of trace elements in the continuum soil water–mire–humic lake–river–large oligotrophic lake of a Subarctic watershed,” Aquat. Geochem. 22, 65–95 (2016).

    Article  Google Scholar 

  26. A. Itoh, C. Kimata, H. Miwa, H. Sawatari, and H. Haraguchi, “Speciation of trace metals in pond water as studied by liquid chromatography/inductively coupled plasma mass spectorometry,” Bull. Chem. Soc. Jpn. 69 (12), 3469–3473 (1996).

    Article  Google Scholar 

  27. P. G. Kayukov, Study of Radiation Environment at the Territory of Republic of Kazakhstan. Report of 2004–2008 (Volkovgeologiya, Almaty, 2008) [in Russian].

    Google Scholar 

  28. Yu. I. Kazakova, “Anthropogenic fracturing and chemical composition of waters of the filtration zone of the Degelen mountainous massif,” Vestn. NYATs RK, No. 4, 84–89 (2005).

    Google Scholar 

  29. M. N. Kolpakova, O. L. Gaskova, and O. S. Naimushina, “Ebeity Lake, Russia: chemical-organic and mineral composition of water and bottom deposits,” Izv. Tomsk. Politekhn. Univ. Inzh. Geores. 329 (1), 111–123 (2018).

    Google Scholar 

  30. B. D. Lee, C. H. Jeong, Y. C. Lee, Y. J. Lee, and J. H. Yang, “Statistical Analysis and Thermodynamic Equilibrium Modelling for Chemical Composition of Groundwater and Spring Water at Jeju Island, South Korea,” Water 777 (12), 1–18 (2020).

    Google Scholar 

  31. O. C. Lind, D. H. Oughton, B. Salbu, L. Skipperud, M. A. Sickel, and J. E. Brown, “Transport of low 240Pu/239Pu atom ratio plutonium–species in the Ob and Yenisey Rivers to the Kara Sea,” Earth Planet. Sci. Lett. 251 (1–2), 33–43 (2006).

    Article  Google Scholar 

  32. J. J. Mahoney and R. T. Jakubowski, “Assessment of uranyl sorption constant on ferrihydrite—comparison of model derived constants and updates to the diffuse layer model database,” Uranium, Mining and Hydrogeology, Ed. by B. Merkel and A. Hasche-Berger (Springer, Berlin–Heidelberg, 2008), pp. 919–928.

    Google Scholar 

  33. J. Makinen, “Similarity analysis using rank in till geochemistry. Bull. Geol. Soc. of Finland. 63 (1), 49–57 (1991).

    Article  Google Scholar 

  34. I. N. Malikova, V. D. Strakhovenko, and M. T. Ustinov, “Uranium and thorium contents in soils and bottom sediments of lake Bolshoye Yarovoye, western Siberia,” J. Env. Radioact. 211, 106048 (2020).

    Article  Google Scholar 

  35. S. J. Markich, “Uranium speciation and bioavailability in aquatic systems: an overview,” The Sc. World J. 2, 707–729 (2002).

    Article  Google Scholar 

  36. S. J. Markich and P. L. Brown, “Actinide speciation and bioavailability in fresh and marine waters,” Enc. Inorg. Bioinorg. Chem., (2019). doi.org/https://doi.org/10.1002/9781119951438.eibc2559

  37. G. A. Mashkovtsev, A. K. Konstantinov, A. K. Miguta, M. V. Shumilin, and V. N. Shchetochkin, Uranium of the Russian Interior (VIMS, Moscow, 2010) [in Russian].

    Google Scholar 

  38. M. L. Pacheco and J. Havel, “Capillary zone electrophoretic (CZE) study of uranium(VI) complexation with humic acids,” J. Radioanal. Nucl. Chem. 248, 565–570 (2001).

    Article  Google Scholar 

  39. C. J. Placzek, J. M. Heikoop, B. House, B. S. Linhoff, and M. Pelizza, “Uranium isotope composition of waters from South Texas uranium ore deposits,” Chem. Geol. 437, 44–55 (2016).

    Article  Google Scholar 

  40. V. I. Radomskaya, D. V. Yusupov, L. M. Pavlova, A. G. Sergeeva, and E. N. Voropaeva, “Using multivariate statistical analysis to study the ecological and geochemical properties of soils of Blagoveshchensk city,” Uch. Zap. Kazan. Univ. Ser. Est. Nauki. 159 (4), 602–617 (2017).

    Google Scholar 

  41. M. E. Ragoussi and D. Costa, “Fundamentals of the NEA Thermochemical Database and its influence over national nuclear programs on the performance assessment of deep geological repositories”, J. Environ. Radioact. 196, 225–231 (2019).

    Article  Google Scholar 

  42. P. E. Reiller and M. Descostes, “Development and application of the thermodynamic database PRODATA dedicated to the monitoring of mining activities from exploration to remediation,” Chemosphere 251, 126301 (2020).

    Article  Google Scholar 

  43. C. Reimann, P. Filzmoser, K. Hron, P. Kynčlová, and R. G. Garrett, “A new method for correlation analysis of compositional (environmental) data—a worked example,” Sci. Total Env. 607–608, 965–971 (2017).

    Article  Google Scholar 

  44. L. P. Rikhvanov, “Radioactivity and radioactive elements as factors of geologicam medium and its application in the Earth’s science,” Razved. Okhr. Nedr, 12, 55–61 (2017).

    Google Scholar 

  45. S. Rollin and U. Eklund, “Determination of U(VI) and U(IV) by ion chromatography-inductively coupled plasma mass spectrometry and its application to kinetic studies,” J. Chromatogr. 884A, 131–141 (2000).

    Article  Google Scholar 

  46. H. R. Rollinson, Using Geochemical Data: Evaluation, Presentation, Interpretation (Routledge, New York, 2014).

    Book  Google Scholar 

  47. B. Salbu, “Speciation of radionuclides in the environment,” In Encyclopedia of Analytical Chemistry (2006), pp. 1–24. https://doi.org/10.1002/9780470027318.a6308

  48. B. Salbu, V. Kashparov, O. C. Lind, R. Garcia-Tenorioc, M. P. Johansen, D. P. Child, and R. C. Sanchof, “Challenges associated with the behavior of radioactive particles in the environment,” J. Env. Radioact. 186, 101–115 (2018).

    Article  Google Scholar 

  49. S. B. Subbotin, and Yu. V. Dubasov, “Radioactive contamination of water of the Degelen Mountain Massif,” Radiochemistry 55 (6), 647–654.

  50. A. S. Toropov, “Cesium-137 speciation in natural waters of the Semipalatinsk test site in the model and natural experiments,” Vestn. Zabaikal’sk. Gos. Univ. 23 (12), 59–68 (2017).

    Google Scholar 

  51. A. S. Toropov, “Fractionation of technogenic radionuclides species in water bodies of Semipalatinsk Test Site,” Bull. Tomsk Polytech. Univ. Geo Assets Eng. 329 (6), 74–84 (2018).

    Google Scholar 

  52. A. S. Toropov, “Migration forms of anthropogenic radionuclides in tunnel waters at the Degelen Mountains, Semipalatinsk Test Site,” Geochem. Int. 58 (3), 342–351 (2020).

    Article  Google Scholar 

  53. A. S. Toropov and M. S. Panin, “State of groundwaters of the Semipalatinsk test nuclear site (ecological assessment of chemical composition),” Proc. 7 th International Conference “Science and Education–2011”, 2, 243–249 (2011).

  54. A. S. Toropov, E. A. Soldatova, and L. P. Rikhvanov, “Forms of radionuclides (U and Th) migration in natural waters under different geochemical conditions based on computational and experimental data,” Bull. Tomsk Polytech. Univ. Geo Assets Eng. 331 (12), 7–21 (2020).

    Google Scholar 

  55. A. M. Ure and C. M. Davidson, Chemical Speciation in the Environment (Blackwell Science, Glasgow, 2002).

    Book  Google Scholar 

  56. L. Vintró, P. I. Mitchell, A. Omarova, M. Burkitbayev, H. Jiménez Nápoles, and N. D. Priest, “Americium, plutonium and uranium contamination and speciation in well waters, streams and atomic lakes in the Sarzhal region of the Semipalatinsk Nuclear Test Site, Kazakhstan,” J. Env. Radioact. 100 (4), 308–314 (2009).

    Article  Google Scholar 

  57. Y. Wang, C. W. Cuss, and W. Shotyk, “Application of asymmetric flow field-flow fractionation to the study of aquatic systems: Coupled methods, challenges, and future needs,” J. Chromatogr. A. 1632, 461600 (2020).

    Article  Google Scholar 

  58. G. M. Yessilkanov, M. T. Dyusembaeva, L. P. Rikhvanov, N. Zh. Mukhamediyarov, and A. Zh. Tashekova, “Ecological–geochemical features of groundwaters of the Semipalatinsk test site,” Ekol. Prom. Rossii 24 (11), 30–35 (2020).

    Article  Google Scholar 

  59. D. V. Yusupov, L. P. Rikhvanov, N. V. Baranovskaya, L. A. Dorokhova, and A. F. Sudyko, “Bromine in the Poplar leaves of urban areas: natural and anthropogenic sources of scattering,” Bull. of the Tomsk Polytech. Univ. Geo Assets Eng. 332 (1), 76–87 (2021).

    Google Scholar 

Download references

Funding

The reported study was funded by Russian Foundation for Basic Research (project no. 19-33-60030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Toropov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toropov, A.S., Yessilkanov, G.M. Advanced Instruments for Identifying Geochemical Dependences of Radionuclide Migration in Natural Waters. Geochem. Int. 60, 266–278 (2022). https://doi.org/10.1134/S0016702922010116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922010116

Keywords:

Navigation