Log in

Duration of the formation and sources of the granitoids of the Litsk-Araguba Complex, Kola Peninsula

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Postorogenic granitoids of the Litsk-Araguba Complex compose a chain of intrusive bodies around 850 km2 in area, which are confined to the NE-trending deep-seated fault zone. Results of U-Pb zircon dating indicate that the formation of granitoids of the Litsk-Araguba Complex lasted 28 ± 9 Ma. Note that the rocks of the first-fourth phases have similar age within (1774–1762 Ma), while quartz syenites of the fifth phase were formed much later (1746 ± 8 Ma). The study of Sm-Nd isotopic system revealed that the quartz syenites plot in the field of the Nd isotopic evolution of the lower crust represented mainly by the Paleoproterozoic garnet granulites with model ages TNd(DM) = 2.4–2.7 Ga and ɛNd(T) from −5.6 to −6.3. It was found that the near-contact syenites of the Litsk Massif contain composite zircons with an age of 1758 ± 9Ma. They differ from zircons in coeval porphyraceous granites in lowered U and Th concentrations, which are close to those in zircons from the lower crustal garnet granulites of this region. These data in combination with internal structure of the crystals determine xenogenic lower-crustal origin of zircons from syenites and confirm geochemical data on the lower crustal input in the formation of granitoid melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. E. Huppert and S. J. Sparks, “The generation of granitic magmas by intrusion of basalt into continental crust,” J. Petrol. 29(3), 599–624 (1988).

    Article  Google Scholar 

  2. I. Haapala, T. O. Rämö, and S. Frindt,, “Comparison of Proterozoic and Phanerozoic rift-related basalticgranitic magmatism,” Lithos 80, 1–32 (2005).

    Article  Google Scholar 

  3. B. Ryan, “The Nain-Churchill boundary and the Nain plutonic suite: a regional perspective on the geologic setting of the Voisey’s Bay Ni-Cu-Co deposit,” Econ. Geol. 95, 703–724 (2000).

    Google Scholar 

  4. V. R. Vetrin, A. N. Vinogradov, and G. V. Vinogradova, “Petrology and facies-formation analysis of the Litsk-Araguba diorite-granite complex,” in Intrusive Charnockites and Porphyraceous Granites of the Kola Peninsula (Kol’sk. Nauchn. Tsentr AN SSSR, Apatity, 1975), pp. 149–316 [in Russian].

    Google Scholar 

  5. V. R. Vetrin and N. V. Rodionov, “Sm-Nd systematics and petrology of postorogenic granitoids in the northern Baltic Shield,” Geochem. Int. 46(11), 1090–1106 (2008).

    Article  Google Scholar 

  6. E. Heilimo, J. Halla, L. Lauri, T. O. Rämö, H. Huhma, M. I. Kurhila, and K. Front, “The Paleoproterozoic Nattanen-type granites in northern Finland and vicinity-a postcollisional oxidized A-type suite,” Bull. Geol. Soc. Finland 81(1), 7–38 (2009).

    Google Scholar 

  7. S. Daly, V. V. Balagansky, M. J. Timmerman, and M. J. Whitehouse, “The Lapland-Kola Orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere,” in European Lithosphere Dynamics, Ed. by D. G. Gee and R. A. Stephenson, Geol. Soc. London 32, 579–598 (2006).

    Google Scholar 

  8. V. R. Vetrin, T. B. Bayanova, I. L. Kamenskii, and S. V. Ikorskii, “U-Pb ages and helium isotope geochemistry of rocks and minerals from the Litsk-Aragub diorite-granite complex (Kola Peninsula),” Dokl. Earth Sci. 387(8), 947–950 (2002).

    Google Scholar 

  9. D. Chen, T. E. Krough, V. R. Vetrin, and F. P. Mitro- fanov, “U-Pb geochronology of the rocks of the Archean portion of the section of the Kola superdeep well,” in Kola Superdeep Well. Scientific Results and Experience of Study, Ed. by V. P. Orlov and N. P. Laverov (Tekhnoneftegaz, 1998), pp. 59–70 [in Russian].

    Google Scholar 

  10. R. Dell’Agnoll and D. C. de Oliveira, “Oxidized, magnetite-series, rapakivi-type granites of Carajas, Brazil: implications for classification and petrogenesis of A-type granites,” Lithos 93, 215–233 (2007).

    Article  Google Scholar 

  11. Classification and Nomenclature of Igneous Rocks (Nedra, Moscow, 1981) [in Russian].

  12. F. P. Mitrofanov, V. F. Smol’kin, and N. V. Sharov, “Main features of geological structure of the northeastern Baltic Shield,” in Kola Superdeep Well. Scientific Results and Experience of Study, Ed. by V. P. Orlov and N. P. Laverov (Tekhnoneftegaz, 1998), pp. 7–34 [in Russian].

    Google Scholar 

  13. D. S. Korzhinskii, Theory of Metasomatic Zoning (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  14. I. S. Williams, “U-Th-Pb geochronology by ion microprobe. Applications of microanalytical techniques to understanding mineralizing processes,” Rev. Econ. Geol. 7, 1–35 (1998).

    Google Scholar 

  15. K. R. Ludwig, “SQUID 1.00. A User’s Manual,” Berkeley Geochronol. Center Spec. Publ., No. 2 (2000).

    Google Scholar 

  16. K. R. Ludwig, “User’s Manual for Isoplot/Ex, Version 2.10. A Geochronological Toolkit for Microsoft Excel,” Berkeley Geochronol. Center Spec. Publ. 174, (1999).

  17. L. P. Black, S. L. Kamo, C. M. Allen, et al., “TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology,” Chem. Geol. 200, 155–170 (2003).

    Article  Google Scholar 

  18. T. B. Bayanova, Age of Reference Geological Complexes of the Kola Region and Duration of Magmatic Processes (Nauka, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  19. S. B. Jacobsen and G. J. Wasserburg, “Sm-Nd evolution of chondrites and achondrites,” Earth Planet. Sci. Lett. 67, 137–150 (1984).

    Article  Google Scholar 

  20. S. J. Goldstein and S. B. Jacobsen, “Nd and Sm isotopic systematics of rivers water suspended material: implications for crustal evolution,” Earth Planet. Sci. Lett. 87, 249–265 (1988).

    Article  Google Scholar 

  21. P. W. O. Hoskin and Urs. Schaltegger, “The composition of zircon and igneous and metamorphic petrogenesis,” in Zircon, Ed. by L. M. Hanchar and P.W. O. Hoskin, Rev. Miner. 53 (Geochem. Mineral. Soc. America, Washington, 2003), pp. 27–62.

    Google Scholar 

  22. D. Rubatto, “Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism,” Chem. Geol. 184, 123–138 (2002).

    Article  Google Scholar 

  23. V. R. Vetrin and M. M. Kalinkin, Reconstruction of Crustal and Crustal-Mantle Magmatism and Metasomatism (Kol’skii NTs RAN, Apatity, 1992) [in Russian].

    Google Scholar 

  24. V. R. Vetrin, “Composition and structure of the lower crust of the Belomorian Mobile Belt, Baltic Shield,” Petrology 14(4), 390–413 (2006).

    Article  Google Scholar 

  25. P. D. Kempton, H. Downes, E. V. Sharkov, et al., “Petrology and geochemistry of xenoliths from the northern Baltic Shield: evidence for partial melting and metasomatism in the lower crust beneath an Archaean terrane,” Lithos 36, 157–184 (1995).

    Article  Google Scholar 

  26. P. D. Kempton, H. Downes, L. A. Neymark, et al., “Garnet granulite xenoliths from the northern Baltic Shield-the underplated lower crust of a Palaeoproterozoic Large Igneous Province?,” J. Petrol. 42(4), 731–763 (2001).

    Article  Google Scholar 

  27. A. M. Larin, “Rapakivi granites in the geological history of the Earth. Part 1, Magmatic associations with rapakivi granites: age, geochemistry, and tectonic setting,” Stratigr. Geol. Correlation 17(1), 235–258 (2009).

    Article  Google Scholar 

  28. A. Larin, Yu. Amelin, L. Neymark, R. Krymsky, G. Ovchinnikova, A. Belyaev, and A. Shebanov, The origin of Salmi and Uljalegy anorthosite-rapakivi granite massifs: constraints from precise U-Pb geochronology and Pb-Sr-Nd isotope data, in Abstracts of the 7th International Symposium on Rapakivi Granites and Related Rocks, Helsinki, 1996 (Helsinki, 1996), p. 6.

    Google Scholar 

  29. Yu. V. Amelin, A. M. Larin, and R. D. Tucker, “Chronology of multiphase emplacement of the Salmi rapakivi granite-anorthosite complex, Baltic Shield: implications for magmatic evolution,” Contrib. Mineral. Petrol. 127, 353–368 (1997).

    Article  Google Scholar 

  30. J. K. W. Lee, I. S. Williams, and D. J. Ellis, “Pb, U, and Th diffusion in natural zircon,” Nature 390, 159–161 (1997).

    Article  Google Scholar 

  31. V. R. Vetrin, E. N. Lepekhina, I. P. Paderin, and N. V. Rodionov, “Stages of the lower crust formation of the Belomorian Mobile Belt, Kola Peninsula,” Dokl. Earth Sci. 425(2), 269–273 (2009).

    Article  Google Scholar 

  32. V. R. Vetrin and A. A. Nemchin, “The U-Pb age of zircon from a granulite xenolith in the diatreme on Elovyi Island, the southern Kola Peninsula,” Dokl. Earth Sci. 359A(3), 454–457 (1998).

    Google Scholar 

  33. H. Downes, P. Peltonen, I. Mänttäri, and E. V. Sharkov, “Proterozoic zircon ages from lower crustal granulite xenoliths, Kola Peninsula, Russia: evidence for crustal growth and reworking,” J. Geol. Soc. London 159, 485–488 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Vetrin.

Additional information

Original Russian Text © V.R. Vetrin, 2014, published in Geokhimiya, 2014, Vol. 52, No. 1, pp. 38–51.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetrin, V.R. Duration of the formation and sources of the granitoids of the Litsk-Araguba Complex, Kola Peninsula. Geochem. Int. 52, 33–45 (2014). https://doi.org/10.1134/S0016702914010091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702914010091

Keywords

Navigation