Log in

Effect of Confinement of Flow by Side Walls on the Cross Flow past a Circular Cylinder at Moderate Reynolds Numbers

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The effect of confinement of flow over the transversal coordinate on cross flow past a circular cylinder at the Reynolds numbers from 40 to 255 (based on the cylinder diameter and the undisturbed flow velocity) is studied numerically and experimentally. In the experiments, the cylinder was located in a rectangular channel and, in the case of numerical simulation, three types of the boundary conditions, namely, the periodic boundary conditions and the slip and no-slip conditions were imposed on the side walls confining the flow. Particular attention is concentrated on the vertical flow structure in the cylinder wake. It is shown that spiral vortices that travel in the plane of symmetry of the channel are formed only in the case of no-slip boundary conditions in the region of junction of the cylinder and the side walls. Under their interaction, vortex clusters are formed in the center of channel and some indications to flow turbulization can be observed in the wake. Under the periodic boundary conditions and the slip conditions on the side walls, there are no spiral vortices and, in the Re range from 200 to 250, the A and B modes of three-dimensional instability and turbulence transition are implemented in the cylinder wake. The effect of the channel width and the type of boundary conditions on the side walls on the vortex wake structure behind the cylinder and integral flow parameters is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4. 
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

REFERENCES

  1. Chang, P.K. Separation of Flow, Oxford: Pergamon, 1970, ch. 1.

    MATH  Google Scholar 

  2. Zdravkovich, M.M., Flow around Circular Cylinders, Oxford: Oxford Univ. Press, 1997.

    MATH  Google Scholar 

  3. Norberg, C., Effects of Reynolds number and a low-intensity freestream turbulence on the flow around a circular cylinder, Chalmers University, Goteborg, Sweden, Technological Publications, 1987, vol. 87 (2), pp. 1–55.

  4. Beaudan, P. and Moin, P., Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number, Report No. TF-62, Department of Mechanical Engineering, Stanford University. 1994.

  5. Williamson, C.H.K., Vortex dynamics in the cylinder wake, Annu. Rev. Fluid Mech., 1996, vol. 28, pp. 477–539.

    Article  ADS  MathSciNet  Google Scholar 

  6. Schlichting, H., Boundary Layer Theory. New York: McGraw Hill, 1968.

    MATH  Google Scholar 

  7. Van Dyke, M., An Album of Fluid Motion, Stanford: Parabolic Press, 1982.

    Book  Google Scholar 

  8. Williamson, C.H.K., The natural and forced formation of spot-like “vortex dislocations” in the transition of a wake, J. Fluid Mech., 1992, vol. 243, pp. 393–441.

    Article  ADS  Google Scholar 

  9. Norberg, C., An experimental investigation of the flow around a circular cylinder: influence of aspect ratio, J. Fluid Mech., 1994, vol. 258, pp. 287–316.

    Article  ADS  Google Scholar 

  10. Strandenes, H., Pettersen, D., Andersson, H.I., and Manhart, M., Influence of spanwise no-slip boundary conditions on the flow around a cylinder, Comput. Fluids, 2017, vol. 156, pp. 48–57.

    Article  MathSciNet  MATH  Google Scholar 

  11. Dou, H.S. and Ben, A.Q., Simulation and instability investigation of the flow around a cylinder between two parallel walls, J. Therm. Sci., 2015, vol. 24 (2), pp. 140–148.

    Article  ADS  Google Scholar 

  12. Khan, N.B., Ibrahim, Z., Nguyen, L.T., Javed, M.F., and Jameel, M., Numerical investigation of the vortex-induced vibration of an elastically mounted circular cylinder at high Reynolds number (Re = 104) and low mass ratio using the RANS code, PloS ONE, 2017, vol. 12 (10), p. e0185832. https://doi.org/10.1371/journal.pone.0185832

  13. Pereira, F.S., Vaz, G., Eça, L., and Girimaji, S.S., Simulation of the flow around a circular cylinder at Re = 3900 with partially-averaged Navier–Stokes equations, Int. J. Heat Fluid Flow, 2018, vol. 69, pp. 234–246.

    Article  Google Scholar 

  14. Jiang, H., Separation angle for flow past a circular cylinder in the subcritical regime, Phys. Fluids, 2020, vol. 32, p. 014106.

  15. Ma, X., Karamanos, G.S., and Karniadakis, G.E., Dynamics and low-dimensionality of a turbulent near wake, J. Fluid Mech., 2000, vol. 410, pp. 29–65.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Wissink, J.G. and Rodi, W. Numerical study of the near wake of a circular cylinder, Int. J. Heat Fluid Flow, 2008, vol. 29 (4), pp. 1060–1070.

    Article  Google Scholar 

  17. Khan, N.B., Ibrahim, Z., Badry, A.B.B.M, Jameel, M., and Javed, M.F., Numerical investigation of flow around cylinder at Reynolds number = 3900 with large eddy simulation technique: Effect of spanwise length and mesh resolution, Proc. Inst. Mech. Eng., Part M: J. Eng. Maritime Environment, 2019, vol. 233 (2), pp. 417–427. https://doi.org/10.1177/1475090217751326

    Article  Google Scholar 

  18. Roshko, A., On the development of turbulent wakes from vortex streets. NACA Rep. 1191, Washington D.C.: 1954.

  19. Thompson, M., Hourigan, K., and Sheridan, J., Three-dimensional instabilities in the wake of a circular cylinder, Exp. Therm. Fluid Sci., 1996, vol. 12 (2), pp. 190–196.

    Article  Google Scholar 

  20. Zhang, H.Q., Fey, U., Noack, B.R., Konig, M., and Eckelmann, H., On the transition of the cylinder wake, Phys. Fluids, 1995, vol. 7(4), pp. 779–794.

    Article  ADS  Google Scholar 

  21. Mittal, S., Pandi, J.S.S., and Hore, M., Cellular vortex shedding from a cylinder at low Reynolds number, J. Fluid Mech., 2021, vol. 915, p. A74.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Fukuoka, H., Hirabayashi, S., and Suzuki, H., The effects of free surface and end cell on flow around a finite circular cylinder with low aspect ratio, J. Mar. Sci. Technol., 2016, vol. 21 (1), pp. 145–153.

    Article  Google Scholar 

  23. Sarwar, W. and Mellibovskya, F. Characterization of three-dimensional vertical structures in the wake past a circular cylinder in the transitional regime, Phys. Fluids, 2020, vol. 32 (7), p. 074104.

  24. Bhattacharya, S., The effect of spatially and temporally modulated plasma actuation on cylinder wake, AIAA J., 2020, vol. 58, pp. 3808–3818.

    Article  ADS  Google Scholar 

  25. Coutanceau, M. and Bouard, R., Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow, J. Fluid Mech., 1977, vol. 79 (2), pp. 231–256.

    Article  ADS  Google Scholar 

  26. Lee, T. and Budwig, R., A study of the effect of aspect ratio on vortex shedding behind circular cylinders, Phys. Fluids A, 1991, vol. 3 (2), pp. 309–315.

    Article  ADS  Google Scholar 

  27. Chang, Y.S., Chen, Y.-J., Qiu, Y.-H., Chang, C.C., Chu, C.-C., and Lee, F.-S., Source-like patterns of flow past a circular cylinder of finite span at low Reynolds numbers, Phys. Fluids, 2021, vol. 33 (8), p. 083607.

  28. Zanin, B.Yu., Zverkov, I.D., Kozlov, V.V., and Pavlenko, A.M., Vortex structure of separated flows on model wings at low freestream velocities, Fluid Dyn., 2008, vol. 43 (6), pp. 938–944.

    Article  ADS  Google Scholar 

  29. Boiko, A.V., Dovgal, A.V., Zanin, B.Yu., and Kozlov, V.V., Three-dimensional structure of separated flows on wing airfoils (An overview), Thermophys. Aeromech., 1996, vol. 3 (1), pp. 1–13.

    Google Scholar 

  30. Zanin, B.Y., Separated flows receptivity for external disturbances, in: AIP Conf. Proc., 2017, vol. 1893 (1), p. 020006.

  31. American National Standards Institute. Measurement of Gas Flow by Means of Critical Flow Venturi Nozzles, American Society of Mechanical Engineers, 1987.

  32. Mikheev, N.I. and Dushin, N.S., A method for measuring the dynamics of velocity vector fields in a turbulent flow using smoke image-visualization videos, Instrum. Exp. Tech., 2016, vol. 59 (6), pp. 882–889.

    Article  Google Scholar 

  33. Mikheev, N.I., Goltsman, A.E., Saushin, I.I., and Dushina, O.A., Estimation of turbulent energy dissipation in the boundary layer using Smoke Image Velocimetry, Exp. Fluids, 2017, vol. 58 (8), Article 97.

  34. Kalinin, E.I., Mazo, A.B., and Isaev, S.A., Composite mesh generator for CFD problems, IOP Conf. Ser.: Materials Sci. Eng., 2016, vol. 158, p. 012047.

  35. Pearson, R.A., Consistent boundary conditions for numerical models of system that admit disperse waves, J. Atmos. Sci., 1976, vol. 31, pp. 1481–1489.

    Article  ADS  Google Scholar 

  36. Nikolas, K., Dimokratis, G., and Starvos, K., Three dimensional flow around a circular cylinder confined in a plane channel, Phys. Fluids, 2011, vol. 23, p. 064106.

  37. Singha, S. and Sinhamahapatra, K., Flow past a circular cylinder between parallel walls at low Reynolds numbers, Ocean Eng., 2010, vol. 37, pp. 757–769.

    Article  Google Scholar 

  38. Molochnikov, V.M., Mazo, A.B., Kalinin, E.I., Malyukov, A.V., Okhotnikov, D.I., and Dushina, O.A., Formation and turbulent breakdown of large-scale vortical structures behind an obstacle in a channel at moderate Reynolds numbers, Phys. Fluids, 2019, vol. 31 (10), p. 104.

    Article  Google Scholar 

  39. Molochnikov, V.M., Mazo, A.B., Malyukov, A.V., Kalinin, E.I., Mikheev, N.I., Dushina O.A., and Paereliy, A.A., Distinctive features of vortical structures generation in separated channel flow behind a rib under transition to turbulence, Thermophys. Aeromech., 2014, vol. 21 (3), pp. 309–317.

    Article  ADS  Google Scholar 

  40. Kalinin, E., Mazo, A., Molochnikov, V., and Dushina, O., Spectral analysis of a vortex wake behind a circular cylinder in a channel at moderate Reynolds numbers, Lobachevskii J. Math., 2021, vol. 42 (8), pp. 1989–1997.

    Article  MathSciNet  MATH  Google Scholar 

  41. Kuzmina, S., Ishmuratov, F., Zichenkov, M., Chedrik, V., Amiryants, G., Kulesh, V., Malyutin, V., Chedrik, A., Timokhin, V., Shalaev, S., Chevagin, A., Efimov, R., Kursakov, I., Kuruliuk, K., Lysenkov, A., Malenko, V., Pronin, M., and Saprykin, A., Wind tunnel testing of adaptive wing structures, in: Morphing Wing Technologies. Large Commercial Aircraft and Civil Helicopters, Butterworth-Heinemann, 2018, pp. 713–755. https://doi.org/10.1016/B978-0-08-100964-2.00023-X

    Book  Google Scholar 

  42. Stansby, P.K., The effects of end plates on the base pressure coefficient of a circular cylinder, Aeronaut. J, 1968, vol. 78 (757), pp. 36–37. https://doi.org/10.1017/S0001924000036319

    Article  Google Scholar 

  43. Zhogolev, D.A., Kopylov, A.A., Nikulenko, A.A., Sevostyanov, S.Ya., and Sudakov, V.G., An active system for controlling the wing flap flow on a model of a passenger aircraft wing section, J. “Almaz–Antey” Air and Space Defence Corporation, 2020, vol. 4, pp. 41–46.

    Google Scholar 

Download references

Funding

The studies were carried out with financial support from the State Task of Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences” (approbation of the SIV method) and the Russian Foundation for Basic Research (project no. 20-08-00621) (scientific results).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. A. Dushina, E. I. Kalinin, M. A. Klyuev, A. B. Mazo or V. M. Molochnikov.

Additional information

Translated by E.A. Pushkar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dushina, O.A., Kalinin, E.I., Klyuev, M.A. et al. Effect of Confinement of Flow by Side Walls on the Cross Flow past a Circular Cylinder at Moderate Reynolds Numbers. Fluid Dyn 58, 84–100 (2023). https://doi.org/10.1134/S0015462822601905

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822601905

Keywords:

Navigation