Log in

Development of a Numerical Model Designed to Calculate the Temperature Field and Thermal Stresses in Structural Elements of Aircrafts

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The algorithm for the numerical solution of the quasistatic thermoelasticity problem in the domains of simple spatial forms is briefly described. The initial validation and verification of the developed numerical technique was performed. Some results of the solution of the quasistatic thermoelasticity problem in the simplest structural elements of aircraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4. 
Fig. 5. 
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Kartashov, E.M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel (Analytical Methods for Solid Heat Conductivity Theory), Moscow: Vysshaya Shkola, 2001.

  2. Dimitrienko, Yu.I., Zakharov, A.A., Koryakov, M.N., Syzdykov, E.K., and Minin, V.V., Computational solution of conjugated problem of hypersonic air-dynamics and thermomechanics of thermodecomposition structures, Inzh. Zh.: Nauka Innovatsii, 2013, no. 9. http://engjournal.ru/catalog/mathmodel/aero/1114.html.

  3. Kovalenko, A.D., Termouprugost’. Uchebnoe Posobie (Thermoelasticity. Student’s Book), Kiev: Vishcha Shkola, 1975.

  4. Dimitrienko, Yu.I., Zakharov, A.A., Koryakov, M.N., and Syzdykov, E.K., The way to simulate adjoint aerogasdynamic and heat exchange processes at the heat protection surface of promising hypersonic aircrafts, Izv. Vyssh. Uchebn. Zaved., Mashinostr., 2014, no. 3 (648), pp. 23–34.

  5. Kuzenov, V.V. and Ryzhkov, S.V., Radiation-hydrodynamic simulation for contact boundary of plasma target being in external magnetic field, Prikl. Fiz., 2014, no. 3, pp. 26–30.

  6. Kotov, M.A. and Kuzenov, V.V., Numerical simulation of surface flow-round for promising hypersonic aircrafts, Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Ser. “Mashinostroenie,” 2012, no. 3, pp. 17–30.

  7. Ryzhkov, S.V., Compact toroid and advanced fuel – together to the Moon?!, Fusion Sci. Technol., 2005, vol. 47, no. 1T, pp. 342–344.

    Article  ADS  Google Scholar 

  8. Ryzhkov, S.V., The way to simulate thermal physical processes in magnetic thermonuclear engine, Tepl. Protsessy Tekh., 2009, no. 9, pp. 397–400.

  9. Kuzenov, V.V., The way to generate regular adaptive grids in spatial areas with curved boundaries, Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Ser. “Mashinostroenie,” 2008, no. 1, pp. 3–11.

  10. Anderson, D.A., Tannehill, J.E., and Fletcher, R.H., Computational Fluid Mechanics and Heat Transfer, New York: Hemisphere Publ. Co., 1984.

    MATH  Google Scholar 

  11. Samarskii, A.A., Vvedenie v teoriyu raznostnykh skhem (Introduction into the Theory of Difference Schemes), Moscow: Gl. Red. Fiz.-Mat. Lit., Nauka, 1971.

  12. Samarskii, A.A. and Nikolaev, E.S., Metody resheniya setochnykh uravnenii (Methods for Solving Finite-Difference Equations), Moscow: Nauka, 1978.

  13. Al’shina, E.A., Boltnev, A.A., and Kacher, O.A., Empirical improving for the simplest gradient methods, Mat. Model., 2005, vol. 17, no. 6, pp. 43–57.

    MathSciNet  MATH  Google Scholar 

  14. Golovachev, Yu.P., Chislennoe modelirovanie techenii vyazkogo gaza v udarnom sloe (Numerical Simulation of Viscous Gas Flow in Shock Layer), Moscow: Nauka, 1996.

  15. Grigor’ev, Yu.N., Vshivkov, V.A., and Fedoruk, M.P., Chislennoe modelirovanie metodami chastits v yacheikakh (Numerical Simulation by Means of Particle-in-Cell Method), Novosibirsk: Siberian Branch RAS, 2004.

  16. Lunev, V.V., Giperzvukovaya aerodinamika (Hypersonic Aerodynamics), Moscow: Mashinostroenie, 1975.

  17. Lunev, V.V., Techenie real’nykh gazov s bol’shimi skorostyami (High Velocity Flowing for Real Gas), Moscow: Fizmatlit, 2007.

  18. Pandey, A.K., Dechaumphai, P., and Weiting, A.R., Thermal-structural finite element analysis using linear flux formulation, NASA Technical Memorandum, 1990, no. 102746.

  19. Polesky, S.P., et al., Three-dimensional thermal structural analysis of a swept cowl leading edge subjected to skewed shock-shock interference heating, J. Thermophys., 1992, vol. 6, no. 1, pp. 48–54.

    Article  Google Scholar 

  20. Surzhikov, S.T., Convective heating of small-radius spherical blunting for relatively low hypersonic velocities, High Temp., 2013, vol. 51, no. 2, pp. 231–246.

    Article  Google Scholar 

  21. Kuzenov, V.V., The way to test separate elements of calculation method for physical processes in the target of magnetic-inertial thermonuclear synthesis, Prikl. Fiz., 2016, no. 2, pp. 16–24.

  22. Kuzenov, V.V. and Ryzhkov, S.V., Numerical simulation of laser pressure process for the target being in external magnetic field, Mat. Model., 2017, vol. 29, no. 9, pp. 19–32.

    MathSciNet  Google Scholar 

  23. Kuzenov, V.V. and Ryzhkov, S.V., Approximate method for calculating convective heat flux on the surface of bodies of simple geometric shapes, J. Phys.: Conf. Ser., 2017, vol. 815, p. 012024.

  24. Kuzenov, V.V., Lebo, A.I., Lebo, I.G., and Ryzhkov, S.V., Fiziko-matematicheskie modeli i metody rascheta vozdeistviya moshchnykh lazernykh i plazmennykh impul’sov na kondensirovannye i gazovye sredy (Physical and Mathematical Models and Methods for Calculating Impact Powerful Laser and Plasma Pulses to Condensed and Gas Mediums), Moscow: Bauman Moscow State Technical Univ., 2017.

  25. Kuzenov, V.V., Ryzhkov, S.V., and Shumaev, V.V., Application of Thomas-Fermi model to evaluation of thermodynamic properties of magnetized plasma, Probl. At. Sci. Technol., 2015, no. 1 (95), pp. 97–99.

  26. Kuzenov, V.V., Ryzhkov, S.V., and Shumaev, V.V., Numerical thermodynamic analysis of alloys for plasma electronics and advanced technologies, Probl. At. Sci. Technol., 2015, no. 4 (98), pp. 53–56.

  27. Ryzhkov, S.V. and Kuzenov, V.V., Analysis of the ideal gas flow over body of basic geometrical shape, Int. J. Heat Mass Transf., 2019, vol. 132, pp. 587–592.

    Article  Google Scholar 

  28. Kuzenov, V.V., Dobrynina, A.O., and Shumaev, V.V., Calculating processes of laminar and turbulent heat transfer around the elements of the aircraft, J. Phys.: Conf. Ser., 2018, vol. 980, p. 012023.

  29. Shumaev, V.V. and Kuzenov, V.V., Development of the numerical model for evaluating the temperature field and thermal stresses in structural elements of aircrafts, J. Phys.: Conf. Ser., 2017, vol. 891, p. 012311.

  30. Surzhikov, S.T., Raschetnoe issledovanie aerotermodinamiki giperzvukovogo obtekaniya zatuplennykh tel na primere analiza eksperimental’nykh dannykh (Calculation Research of Aerothermodynamic of Hypersonic Flow-Round of Blunt Bodies by Analyzing the Experimental Data), Moscow: Institute for Problems in Mechanics RAS, 2011.

  31. Kotov, M.A., Ruleva, L.B., Solodovnikov, S., and Surzhikov, S.T., Carrying out experiments of models streamlines in hypersonic shock aerodynamic tube, Fiz.-Khim. Kinet. Gaz. Din., 2013, vol. 14, no. 4. http://chemphys.edu.ru/issues/2013-14-4/articles/428/.

  32. Glushko, G.S., Ivanov, I.E., and Kryukov, I.A., Turbulence modeling for supersonic jet flows, Fiz.-Khim. Kinet. Gaz. Din., 2010, vol. 9. http://chemphys.edu.ru/issues/2010-9/articles/142/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Kuzenov or V. V. Shumaev.

Additional information

Translated by K. Gumerov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzenov, V.V., Shumaev, V.V. & Dobrynina, A.O. Development of a Numerical Model Designed to Calculate the Temperature Field and Thermal Stresses in Structural Elements of Aircrafts. Fluid Dyn 57 (Suppl 1), S170–S180 (2022). https://doi.org/10.1134/S0015462822601425

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822601425

Keywords:

Navigation