Log in

Unconventional Approach to the Synthesis of Nickel and Platinum Complexes of 1,3,6-Azadiphosphacycloheptanes

  • CHEMISTRY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

A new method has been proposed for the synthesis of bis(phosphine sulfides) and nickel and platinum chelate complexes of 1,3,6-azadiphosphacycloheptanes. The method is based on the ability of 14-membered 3,6,10,13-diazadiphosphacyclotetradecanes to undergo a reversible transformation in solutions into a mixture of meso- and rac-isomers of seven-membered bis-phosphines. The reaction of 3,6,10,13-diazadiphosphacyclotetradecanes with elementary sulfur results in 14-membered tetrakis(phosphine sulfides) or seven-membered bis(phosphine sulfides), depending on the reaction conditions. The reaction of 1,3,6-azadiphosphacycloheptanes, resulting from the reversible dissociation of 14-membered tetraphosphines in chloroform, with Ni(CH3CN)6(BF4)2 and Pt(COD)Cl2 gives the corresponding chelate complexes. The structures of the meso-isomer of 1-cyclohexyl-3,6-diphenyl-1-aza-3,6-diphosphacycloheptane-3,6-disulfide, bis-(κ2-1-isopropyl-3,6-diphenyl-1-aza-3,6-diphosphacycloheptane)nickel bis(tetrafluoroborate), bis-(κ2-1-cyclohexyl-3,6-diphenyl-1-aza-3,6-diphosphacycloheptane)chloronickel tetrafluoroborate, and cis-dichloro-(κ2-1-cyclohexyl-3,6-diphenyl-1-aza-3,6-diphosphacycloheptane)platinum(II), isolated in crystalline form, have been confirmed by single crystal X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Scheme 2.
Fig. 2.
Scheme 3.
Scheme 4.
Fig. 3.

REFERENCES

  1. Homogeneous Catalysis with Metal Phosphine Complexes, Pignolet, L.H., Ed., New York: Springer, 1983. https://doi.org/10.1007/978-1-4613-3623-5

  2. Gillespie, J.A., Doddsa, D.L., and Kamer, P.C.J., Dalton Trans., 2010, vol. 39, pp. 2751–2764. https://doi.org/10.1039/B913778E

    Article  CAS  PubMed  Google Scholar 

  3. Van Leeuwen, P.W.N.M., Kamer, P.C.J., Reek, J.N.H., and Dierkes, P., Chem. Rev., 2000, vol. 100, no. 8, pp. 2741–2770. https://doi.org/10.1021/cr9902704

    Article  CAS  PubMed  Google Scholar 

  4. Karasik, A.A., Balueva, A.S., Musina, E.I., and Sinyashin, O.G., Mendeleev Commun., 2013, vol. 23, no. 8, pp. 237–248. https://doi.org/10.1016/j.mencom.2013.09.001

    Article  CAS  Google Scholar 

  5. Karasik, A.A., Balueva, A.S., Musina, E.I., Strelnik, I.D., and Sinyashin, O.G., Pure Appl. Chem., 2017, vol. 89, no. 3, pp. 293–309. https://doi.org/10.1515/pac-2016-1022

    Article  CAS  Google Scholar 

  6. Wiese, S., Kilgore, U.J., Ho, M.-H., Raugei, S., DuBois, D.L., Bullock, R.M., and Helm, M.L., ACS Catal., 2013, vol. 3, no. 11, pp. 2527–2535. https://doi.org/10.1021/cs400638f

    Article  CAS  Google Scholar 

  7. Wilson, A.D., Newell, R.H., McNevin, M.J., and Muckerman, J.T., Rakowski DuBois, M., and DuBois, D.L., J. Am. Chem. Soc., 2006, vol. 128, no. 1, pp. 358–366. https://doi.org/10.1021/ja056442y

    Article  CAS  PubMed  Google Scholar 

  8. DuBois, D.L., Inorg. Chem., 2014, vol. 53, no. 8, pp. 3935–3960. https://doi.org/10.1021/ic4026969

    Article  CAS  PubMed  Google Scholar 

  9. Stewart, M.P., Ho, M.-H., Wiese, S., Lindstrom, M.L., Thogerson, C.E., Raugei, S., Bullock, R.M., and Helm, M.L., J. Am. Chem. Soc., 2013, vol. 135, no. 16, pp. 6033–6046. https://doi.org/10.1021/ja400181a

    Article  CAS  PubMed  Google Scholar 

  10. Reback, M.L., Ginovska, B., Buchko, G.W., Dutta, A., Priyadarshani, N., Kier, B.L., Helm, M.L., Raugei, S., and Shaw, W.J., J. Coord. Chem., 2016, vol. 69, nos. 11–13, pp. 1730–1747. https://doi.org/10.1080/00958972.2016.1188924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brown, H.J.S., Wiese, S., Roberts, J.A.S., Bullock, R.M., and Helm, M.L., ACS Catal., 2015, vol. 5, no. 4, pp. 2116–2123. https://doi.org/10.1021/cs502132y

    Article  CAS  Google Scholar 

  12. Helm, M.L., Stewart, M.P., and Bullock, R.M., Rakowski DuBois, M., and DuBois, D.L., Science, 2011, vol. 333, no. 6044, pp. 863–866. https://doi.org/10.1126/science.1205864

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Musina, E.I., Karasik, A.A., Balueva, A.S., Strelnik, I.D., Fesenko, T.I., Dobrynin, A.B., Gerasimova, T.P., Katsyuba, S.A., Kataeva, O.N., Lonnecke, P., Hey-Hawkins, E., and Sinyashin, O.G., Eur. J. Inorg. Chem., 2012, pp. 1857–1866. https://doi.org/10.1002/ejic.201101337

  14. Fesenko, T.I., Strelnik, I.D., Musina, E.I., Karasik, A.A., and Sinyashin, O.G., Russ. Chem. Bull., 2012, vol. 61, pp. 1776–1781. https://doi.org/10.1007/s11172-012-0247-7

    Article  CAS  Google Scholar 

  15. Karasik, A.A., Balueva, A.S., Moussina, E.I., Naumov, R.N., Dobrynin, A.B., Krivolapov, D.B., Litvinov, I.A., and Sinyashin, O.G., Heteroat. Chem., 2008, vol. 19, no. 2, pp. 125–132. https://doi.org/10.1002/hc.20397

    Article  CAS  Google Scholar 

  16. Kreienbrink, A., Loennecke, P., Findeisen, M., and Hey-Hawkins, E., Chem. Commun., 2012, vol. 48, no. 75, pp. 9385–9387. https://doi.org/10.1039/C2CC34860H

    Article  CAS  Google Scholar 

  17. Musina, E.I., Fesenko, T.I., Strelnik, I.D., Polyancev, F.M., Latypov, Sh.K., Lonnecke, P., Hey-Hawkins, E., Karasik, A.A., and Sinyashin, O.G., Dalton Trans., 2015, vol. 44, no. 30, pp. 13565–13572. https://doi.org/10.1039/C5DT01910A

    Article  CAS  PubMed  Google Scholar 

  18. Wittmann, T.I., Musina, E.I., Krivolapov, D.B., Litvinov, I.A., Kondrashova, S.A., Latypov, Sh.K., Karasik, A.A., and Sinyashin, O.G., Dalton Trans., 2017, vol. 46, pp. 12417–12420. https://doi.org/10.1039/C7DT03010J

    Article  CAS  PubMed  Google Scholar 

  19. Musina, E., Wittmann, T., Latypov, Sh., Kondrashova, S., Lonnecke, P., Litvinov, I., Hey-Hawkins, E., and Karasik, A., Eur. J. Inorg. Chem., 2019, vol. 2019, no. 26, pp. 3053–3060. https://doi.org/10.1002/ejic.201900386

    Article  CAS  Google Scholar 

  20. Addison, A.W., Rao, T.N., Reedijk, J., Van Rijn, J., and Verschoor, G.C., J. Chem. Soc., Dalton Trans., 1984, no. 7, pp. 1349–1456. https://doi.org/10.1039/DT9840001349

  21. Musina, E.I., Wittmann, T.I., Strelnik, I.D., Naumova, O.E., Karasik, A.A., Krivolapov, D.B., Islamov, D.R., Kataeva, O.N., Sinyashin, O.G., Lonnecke, P., and Hey-Hawkins, E., Polyhedron, 2015, vol. 100, pp. 344–350. https://doi.org/10.1016/j.poly.2015.08.033

    Article  CAS  Google Scholar 

  22. Steinbock, R., Steuber, F., Blumich, B., and Schleker, P.P.M., Inorg. Chem. Commun., 2018, vol. 95, pp. 47–49. https://doi.org/10.1016/j.inoche.2018.07.007

    Article  CAS  Google Scholar 

  23. Drew, D. and Doyle, J.R., Inorg. Synth., 1990, vol. 28, pp. 346-349. https://doi.org/10.1002/9780470132593.ch89

    Article  CAS  Google Scholar 

  24. Van Leewen, P.W.N.M. and Groeneveld, W.L., Inorg. Nucl. Chem. Lett., 1967, vol. 3, no. 4, pp. 145–146. https://doi.org/10.1016/0020-1650(67)80150-8

    Article  Google Scholar 

  25. Sheldrick, G.M., SADABS, Program for empirical X-ray absorption correction. Bruker-Nonius, 2004.

    Google Scholar 

  26. APEX2 (Version 2.1), SAINTPlus, Data Reduction and Correction Program (Version 7.31A), BrukerAXS Inc., Madison, Wisconsin, USA, 2006.

    Google Scholar 

  27. Sheldrick, G.M., Acta Crystallogr. Sect. A, 2015, vol. 71, pp. 3–8. https://doi.org/10.1107/S2053273314026370

    Article  CAS  ADS  Google Scholar 

  28. Sheldrick, G.M., Acta Crystallogr. Sect. C, vol. 71, pp. 3–8. https://doi.org/10.1107/S2053229614024218

  29. Macrae, C.F., Edgington, P.R., McCabe, P., Pidcock, E., Shields, G.P., Taylor, R., Towler, M., and van de Streek, J., J. Appl. Crystallogr., 2006, vol. 39, pp. 453–459. https://doi.org/10.1107/S002188980600731X

    Article  CAS  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Center of Collective Use for Physicochemical Studies of Structure and Properties at Kazan Scientific Center, RAS, for technical support of the research.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Musina.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Dedicated to the Anniversary of Academician Irina Petrovna Beletskaya

Translated by G. Kirakosyan

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musina, E.I., Strelnik, I.D., Litvinov, I.A. et al. Unconventional Approach to the Synthesis of Nickel and Platinum Complexes of 1,3,6-Azadiphosphacycloheptanes. Dokl Chem 513, 342–350 (2023). https://doi.org/10.1134/S0012500823600827

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500823600827

Keywords:

Navigation