Log in

Heterogeneous Catalytic Processes of Oxidative Desulfurization with Participation of Ionic Liquids. A Review

  • CHEMISTRY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

The review analyzes recent publications dealing with the search for new efficient desulfurization technologies, in particular, oxidative desulfurization using ionic liquids. This technology attracts attention due to its relatively mild conditions compared to hydrodesulfurization and its efficiency in removing heavy sulfur derivatives. Of special interest are solid hybrid compositions consisting of a support coated with an ionic liquid layer containing catalytically active centers. Examples of the use of such polyfunctional systems, simultaneously functioning as an adsorbent, extractant, and catalyst, for the oxidative desulfurization of model fuel and real oil feedstock are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.

REFERENCES

  1. Houda, S., Lancelot, C., Blanchard, P., Poinel, L., and Lamonier, C., Catalysts, 2018, vol. 8, no. 9, p. 344. https://doi.org/10.3390/catal8090344

    Article  CAS  Google Scholar 

  2. Rajendran, A., Cui, T., Fan, H., Yang, Z., Feng, J., and Li, W., J. Mater. Chem. A, 2020, vol. 8, no. 5, pp. 2246–2285. https://doi.org/10.1039/C9TA12555H

    Article  CAS  Google Scholar 

  3. Ahmadian, M. and Anbia, M., Energy Fuels, 2021, vol. 35, pp. 10347–10373. https://doi.org/10.1021/acs.energyfuels.1c00862

    Article  CAS  Google Scholar 

  4. Lee, K.X. and Valla, J.A., React. Chem. Eng., 2019, vol. 4, no. 8, pp. 1357–1386. https://doi.org/10.1039/C9RE00036D

    Article  CAS  Google Scholar 

  5. Crandall, B.S., Zhang, J., Stavila, V., Allendorf, M.D., and Li, Z., Ind. Eng. Chem. Res., 2019, vol. 58, no. 42, pp. 19322–19352. https://doi.org/10.1021/acs.iecr.9b03183

    Article  CAS  Google Scholar 

  6. Valenzuela, C., Donoso, C., and Guzmán-Beckmann, L., Key Eng. Mater., 2020, vol. 834, pp. 42–48. https://doi.org/10.4028/www.scientific.net/KEM.834.42

    Article  Google Scholar 

  7. Ahmed, O.U., Mjalli, F.S., Al-Wahaibi, A.W., Al-Wahaibi, Y., and AlNashef, I.M., Solution Chem., 2018, vol. 47, no. 3, pp. 468–483. https://doi.org/10.1007/s10953-018-0732-1

    Article  CAS  Google Scholar 

  8. Romanovskii, B.V. and Tarkhanova, I.G., Usp. Khim., 2017, vol. 86, no. 5, pp. 444–458. https://doi.org/10.1070/RCR4666

    Article  Google Scholar 

  9. Speight, J.G., Handbook of Petroleum Refining, CRC Press, 2016.

    Book  Google Scholar 

  10. Tanimu, A. and Alhooshani, K., Energy Fuels, 2019, vol. 33, no. 4, pp. 2810–2838. https://doi.org/10.1021/acs.energyfuels.9b00354

    Article  CAS  Google Scholar 

  11. Ghubayra, R., Nuttall, C., Hodgkiss, S., Craven, M., Kozhevnikova, E.F., and Kozhevnikov, I.V., Appl. Catal. B, 2019, vol. 253, pp. 309–316. https://doi.org/10.1016/j.apcatb.2019.04.063

    Article  CAS  Google Scholar 

  12. Li, J., Yang, Z., Li, S., **, Q., and Zhao, J., J. Ind. Eng. Chem., 2020, vol. 82, pp. 1–16. https://doi.org/10.1016/j.jiec.2019.10.020

    Article  CAS  Google Scholar 

  13. Tarkhanova, I.G., Ali-Zade, A.G., Buryak, A.K., and Zelikman, V.M., Katal. Prom-sti, 2022, vol. 22, no. 4, pp. 43–50. https://doi.org/10.18412/1816-0387-2022-4-43-50

    Article  CAS  Google Scholar 

  14. Bryzhin, A.A., Rudnev, V.S., Lukiyanchuk, I.V., Vasil’eva, M.S., and Tarkhanova, I.G., Kinet. Catal., 2020, vol. 61, no. 2, pp. 283–290. https://doi.org/10.31857/S0453881120020021

    Article  CAS  Google Scholar 

  15. Xun, S., Zhu, W., Chang, Y., Li, H., Zhang, M., Jiang, W., Zheng, D., Qin, Y., and Li, H., Chem. Eng. J., 2016, vol. 288, pp. 608–617. https://doi.org/10.1016/j.cej.2015.12.005

    Article  CAS  Google Scholar 

  16. Li, X., Zhang, J., Zhou, F., Wang, Y., Yuan, X., and Wang, H., Mol. Catal., 2018, vol. 452, pp. 93–99. https://doi.org/10.1016/j.mcat.2017.09.038

    Article  CAS  Google Scholar 

  17. Abdullah, W.N.W., Bakar, W.A.W.A., Ali, R., Mokhtar, W.N.A.W., and Omar, M.F., J. Clean. Prod., 2017, vol. 162, pp. 1455–1464. https://doi.org/10.1016/j.jclepro.2017.06.084

    Article  CAS  Google Scholar 

  18. Hao, Y., Hao, Y., Ren, J., Wu, B., Wang, X., Zhao, D., and Li, F., New J. Chem., 2019, vol. 43, no. 20, pp. 7725–7732. https://doi.org/10.1039/C9NJ00691E

    Article  CAS  Google Scholar 

  19. Ivanin, I.A., Ali-Zade, A.G., Golubeva, E.N., Zubanova, E.M., Zelikman, V.M., Buryak, A.K., and Tarkhanova, I.G., Mol. Catal., 2020, vol. 484, p. 110727. https://doi.org/10.1016/j.mcat.2019.110727

    Article  CAS  Google Scholar 

  20. Singh, S.K. and Savoy, A.W., J. Mol. Liq., 2020, vol. 297, p. 112038. https://doi.org/10.1016/j.molliq.2019.112038

    Article  CAS  Google Scholar 

  21. Ohno, H., Yoshizawa-Fujita, M., and Kohno, Y., Phys. Chem. Chem. Phys., 2018, vol. 20, no. 16, pp. 10978–10991. https://doi.org/10.1039/C7CP08592C

    Article  CAS  PubMed  Google Scholar 

  22. Amarasekara, A.S., Chem. Rev., 2016, vol. 116, no. 10, pp. 6133–6183. https://doi.org/10.1021/acs.chemrev.5b00763

    Article  CAS  PubMed  Google Scholar 

  23. Gerola, A.P., Costa, P.F.A., Quina, F.H., Fiedler, H.D., and Nome, F., Curr. Opin. Colloid Interface Sci., 2017, vol. 32, pp. 39–47. https://doi.org/10.1016/j.cocis.2017.09.005

    Article  CAS  Google Scholar 

  24. Hatab, F.A., Darwish, A.S., Lemaoui, T., Warrag, S.E.E., Benguerba, Y., Kroon, M.C., and AlNashef, I.M., J. Chem. Eng. Data, 2020, vol. 65, no. 11, pp. 5443–5457. https://doi.org/10.1021/acs.jced.0c00579

    Article  CAS  Google Scholar 

  25. Abdullah, S.B., Aziz, H.A., and Man, Z., Ionic Liquids for Desulphurization: A Review, In: Recent Advances in Ionic Liquids, Rahman, M.M., Ed., London: IntechOpen, 2018, pp. 107–120. https://doi.org/10.5772/intechopen.79281

  26. Player, L.C., Chan, B., Lui, M.Y., Masters, A.F., and Maschmeyer, T., ACS Sustain. Chem. Eng., 2019, vol. 7, no. 4, pp. 4087–4093. https://doi.org/10.1021/acssuschemeng.8b05585

    Article  CAS  Google Scholar 

  27. Zhou, J., Mao, J., and Zhang, S., Fuel Process. Technol., 2008, vol. 89, no. 12, pp. 1456–1460. https://doi.org/10.1016/j.fuproc.2008.07.006

    Article  CAS  Google Scholar 

  28. Su, B.M., Zhang, S., and Zhang, Z.C., J. Phys. Chem. B, 2004, vol. 108, no. 50, pp. 19510–19517. https://doi.org/10.1021/jp049027l

    Article  CAS  Google Scholar 

  29. Hansmeier, A.R., Meindersma, G.W., and Haan, A.B., Green Chem., 2011, vol. 13, no. 7, pp. 1907–1913. https://doi.org/10.1039/C1GC15196G

    Article  CAS  Google Scholar 

  30. Oliveira, O.V., Paluch, A.S., and Costa, L.T., Fuel, 2016, vol. 175, no. 1, pp. 225–231. https://doi.org/10.1016/j.fuel.2016.02.016

    Article  CAS  Google Scholar 

  31. Li, J., Lei, X.J., Tang, X.D., Zhang, X.P., Wang, Z.Y., and Jiao, S., Energy Fuels, 2019, vol. 33, no. 5, pp. 4079–4088. https://doi.org/10.1021/acs.energyfuels.9b00307

    Article  CAS  Google Scholar 

  32. Elwan, H.A., Zaky, M.T., Farag, A.S., Soliman, F.S., and Ezel Dean Hassan, M., J. Mol. Liq., 2017, vol. 248, pp. 549–555. https://doi.org/10.1016/j.molliq.2017.10.077

    Article  CAS  Google Scholar 

  33. Ren, Z., Wei, L., Zhou, Z., Zhang, F., and Liu, W., Energy Fuels, 2018, vol. 32, no. 9, pp. 9172–9181. https://doi.org/10.1021/acs.energyfuels.8b01936

    Article  CAS  Google Scholar 

  34. Ibrahim, M.H., Hayyan, M., Hashim, M.A., and Hayyan, A., Renew. Sust. Energ. Rev., 2017, vol. 76, pp. 1534–1549. https://doi.org/10.1016/j.rser.2016.11.194

    Article  CAS  Google Scholar 

  35. Mai, N.L., Ahn, K., and Koo, Y.M., Process Biochem., 2014, vol. 49, no. 5, pp. 872–881. https://doi.org/10.1016/j.procbio.2014.01.016

    Article  CAS  Google Scholar 

  36. Hao, Y., Hao, Y., Ren, J., Wu, B., Wang, X., Zhao, D., and Li, F., New J. Chem., 2019, vol. 43, no. 20, pp. 7725–7732. https://doi.org/10.1039/C9NJ00691E

    Article  CAS  Google Scholar 

  37. Jiang, W., Zhu, K., Li, H., Zhu, L., Hua, M., **ao, J., Wang, C., Yang, Z., Chen, G., Zhu, W., Li, H., and Dai, S., Chem. Eng. J., 2020, vol. 394, p. 124831. https://doi.org/10.1016/j.cej.2020.124831

    Article  CAS  Google Scholar 

  38. Lü, H., Wang, S., Deng, C., Ren, W., and Guo, B., J. Hazard. Mater., 2014, vol. 279, pp. 220–225. https://doi.org/10.1016/j.jhazmat.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  39. Wang, L., Wang, H., and Wang, Y., J. Mol. Struct., 2020, vol. 1220, p. 128779. https://doi.org/10.1016/j.molstruc.2020.128779

    Article  CAS  Google Scholar 

  40. Jiang, B., Yang, H., Zhang, L., Zhang, R., Sun, Y., and Huang, Y., Chem. Eng. J., 2016, vol. 283, pp. 89–96. https://doi.org/10.1016/j.cej.2015.07.070

    Article  CAS  Google Scholar 

  41. García-Gutiérrez, J.L., Fuentes, G.A., Hernández-Terán, M.E., García, P., Murrieta-Guevara, F., and Jiménez-Cruz, F., Appl. Catal. A, 2008, vol. 334, nos. 1–2, pp. 366–373. https://doi.org/10.1016/j.apcata.2007.10.024

    Article  CAS  Google Scholar 

  42. Otsuki, S., Nonaka, T., Takashima, N., Qian, W., Ishihara, A., Imai, T., and Kabe, T., Energy Fuels, 2000, vol. 14, no. 6, pp. 1232–1239. https://doi.org/10.1021/ef000096i

    Article  CAS  Google Scholar 

  43. Akopyan, A.V., Eseva, E.A., Polikarpova, P.D., Kedalo, A.A., and Anisimov, A.V., Mosc. Univ. Chem. Bull., 2019, vol. 60, no. 6, pp. 284–289. https://doi.org/10.3103/S0027131419060026

    Article  Google Scholar 

  44. Akopyan, A.V., Eseva, E.A., Polikarpova, P.D., Baigil’diev, T.M., Rodin, I.A., and Anisimov, A.V., Russ. J. Appl. Chem., 2019, vol. 92, no. 4, pp. 569–575. https://doi.org/10.1134/S1070427219040141

    Article  CAS  Google Scholar 

  45. Akopyan, A., Eseva, E., Polikarpova, P., Kedalo, A., Vutolkina, A., and Glotov, A., Molecules, 2020, vol. 25, pp. 536–550. https://doi.org/10.3390/molecules25030536

  46. Bartlewicz, O., Dabek, I., Szymanska, A., and Maciejewski, H., Catalysts, 2020, vol. 10, no. 11, p. 1227. https://doi.org/10.3390/catal10111227

    Article  CAS  Google Scholar 

  47. Supported Ionic Liquids, Fehrmann, R., Riisager, A., and Haumann, M., Eds., Weinheim: Wiley-VCH Verlag, 2014.

    Google Scholar 

  48. Steinrück, H.-P. and Wasserscheid, P., Catal. Lett., 2015, vol. 145, no. 1, pp. 380–397. https://doi.org/10.1007/s10562-014-1435-x

    Article  CAS  Google Scholar 

  49. Naicker, L., Friedrich, H.B., Govender, A., and Mohlala, P., Appl. Catal. A, 2018, vol. 562, pp. 37–48. https://doi.org/10.1016/j.apcata.2018.05.018

    Article  CAS  Google Scholar 

  50. Friedrich, M.F., Lucas, M., and Claus, P., Catal. Commun., 2017, vol. 88, pp. 73–76. https://doi.org/10.1016/j.catcom.2016.09.036

    Article  CAS  Google Scholar 

  51. Mondal, P., Chatterjee, S., Nurjamal, K., Maity, S., Bhaumik, A., Brahmachari, G., Ghosh, P., and Mukhopadhyay, C., Catal. Commun., 2020, vol. 139, p. 105966. https://doi.org/10.1016/j.catcom.2020.105966

    Article  CAS  Google Scholar 

  52. Xu, Z., Wan, H., Miao, J., Han, M., Yang, C., and Guan, G., J. Mol. Catal. A: Chem., 2010, vol. 332, nos. 1–2, pp. 152–157. https://doi.org/10.1016/j.molcata.2010.09.011

    Article  CAS  Google Scholar 

  53. Li, L.X., Ling, Q.L., Liu, Z.L., **ng, X.D., Zhu, X.Q., and Meng, X., Bull. Korean Chem. Soc., 2012, vol. 33, no. 10, pp. 3373–3377. https://doi.org/10.5012/bkcs.2012.33.10.3373

    Article  CAS  Google Scholar 

  54. Zhang, Q., Luo, J., and Wei, Y., Green Chem., 2010, vol. 12, no. 12, pp. 2246–2254. https://doi.org/10.1039/C0GC00472C

    Article  CAS  Google Scholar 

  55. Wang, G., Yu, N., Peng, L., Tan, R., Zhao, H., Yin, D., Qiu, H., Fu, Z., and Yin, D., Catal. Lett., 2008, vol. 123, nos. 3–4, pp. 252–258. https://doi.org/10.1007/s10562-008-9415-7

    Article  CAS  Google Scholar 

  56. Jankowska-Wajda, M., Bartlewicz, O., Szpecht, A., Zajac, A., Smiglak, M., and Maciejewski, H., RSC Adv., 2019, vol. 9, pp. 29396–29404. https://doi.org/10.1039/C9RA05948B

    Article  CAS  Google Scholar 

  57. Lijewski, M., Hogg, J.M., Swadźba-Kwaśny, M., Wasserscheid, P., and Haumann, M., RSC Adv., 2017, vol. 7, no. 44, pp. 27558–27563.

    Article  CAS  Google Scholar 

  58. Pavel, O.D., Podolean, I., Parvulescu, V.I., Taylor, S.F.R., Manyar, H.G., Ralphs, K., Goodrich, P., and Hardacre, C., Faraday Discuss., 2018, vol. 206, pp. 535–547. https://doi.org/10.1039/C7FD00159B

    Article  CAS  PubMed  Google Scholar 

  59. Barth, T., Korth, W., and Jess, A., Chem. Eng. Technol., 2017, vol. 40, no. 2, pp. 395–404. https://doi.org/10.1002/ceat.201600140

    Article  CAS  Google Scholar 

  60. Podolean, I., Pavel, O.D., Manyar, H.G., Taylor, S.F.R., Ralphs, K., Goodrich, P., Parvulescu, V.I., and Hardacre, C., Catal. Today, 2019, vol. 333, pp. 140–146. https://doi.org/10.1016/j.cattod.2018.07.014

    Article  CAS  Google Scholar 

  61. Safa, M., Mokhtarani, B., Mortaheb, H.R., Tabar, Heidar, K., Sharifi, A., and Mirzaei, M., Energy Fuels, 2017, vol. 31, no. 9, pp. 10196–10205. https://doi.org/10.1021/acs.energyfuels.6b03505

    Article  CAS  Google Scholar 

  62. Li, X., Zhang, J., Zhou, F., Wang, Y., Yuan, X., and Wang, H., Mol. Catal., 2018, vol. 452, pp. 93–99. https://doi.org/10.1016/j.mcat.2017.09.038

    Article  CAS  Google Scholar 

  63. Xun, S., Zhu, W., Chang, Y., Li, H., Zhang, M., Jiang, W., Zheng, D., Qin, Y., and Li, H., Chem. Eng. J., 2016, vol. 288, pp. 608–617. https://doi.org/10.1016/j.cej.2015.12.005

    Article  CAS  Google Scholar 

  64. Ali-Zade, A.G., Buryak, A.K., Zelikman, V.M., Oskolok, K.V., and Tarkhanova, I.G., New J. Chem., 2020, vol. 44, no. 16, pp. 6402–6410. https://doi.org/10.1039/C9NJ05403K

    Article  CAS  Google Scholar 

  65. Bryzhin, A.A., Gantman, M.G., Buryak, A.K., and Tarkhanova, I.G., Appl. Catal. B, 2019, vol. 257, p. 117938. https://doi.org/10.1016/j.apcatb.2019.117938

    Article  CAS  Google Scholar 

  66. Bryzhin, A.A., Buryak, A.K., Gantman, M.G., Zelikman, V.M., Shilina M.I., and Tarkhanova, I.G., Kinet. Catal., 2020, vol. 61, no. 5, pp. 775–785. https://doi.org/10.1134/S0023158420050018

    Article  CAS  Google Scholar 

  67. Jalil, P.A., Faiz, M., Tabet, N., Hamdan, N.M., and Hussain, Z., J. Catal., 2003, vol. 217, no. 2, pp. 292–297. https://doi.org/10.1016/S0021-9517(03)00066-6

    Article  CAS  Google Scholar 

  68. Craven, M., **ao, D., Kunstmann-Olsen, C., Kozhevnikova, E.F., Blanc, F., Steiner, A., and Kozhevnikov, I.V., Appl. Catal. B, 2018, vol. 231, pp. 82–91. https://doi.org/10.1016/j.apcatb.2018.03.005

    Article  CAS  Google Scholar 

  69. Gorbunov, V.S., Bryzhin, A.A., Popov, A.G., and Tarkhanova, I.G., Pet. Chem., 2021, vol. 61, no. 6, pp. 1260–1269. https://doi.org/10.1134/S0965544121110086

    Article  CAS  Google Scholar 

  70. Vekariya, R.L., J. Mol. Liq., 2017, vol. 227, pp. 44–60. https://doi.org/10.1016/j.molliq.2016.11.123

    Article  CAS  Google Scholar 

  71. Tarkhanova, I.G., Bryzhin, A.A., Gantman, M.G., Yarovaya, T.P., Lukiyanchuk, I.V., Nedozorov, P.M., and Rudnev, V.S., Surf. Coat. Technol., 2019, vol. 362, pp. 132–140. https://doi.org/10.1016/j.surfcoat.2019.01.101

    Article  CAS  Google Scholar 

  72. Bryzhin, A.A., Tarkhanova, I.G., Gantman, M.G., Rudnev, V.S., Vasilyeva, M.S., and Lukiyanchuk, I.V., Surf. Coat. Technol., 2020, vol. 393, p. 125746. https://doi.org/10.1016/j.surfcoat.2020.125746

    Article  CAS  Google Scholar 

  73. Bryzhin, A.A., Tarkhanova, I.G., Maslakov, K.I., Nikolaev, S.A., Gurevich, S.A., Kozhevin, V.M., Yavsin, D.A., Gantman, M.G, and Rostovshchikova, T.N., Russ. J. Phys. Chem. A, 2019, vol. 93, no. 10, pp. 1976–1985. https://doi.org/10.1134/S0036024419100029

    Article  CAS  Google Scholar 

  74. Rostovshchikova, T.N., Lokteva, E.S., Shilina, M.I., Golubina, E.V., Maslakov, K.I., Krotova, I.N., Bryzhin, A.A., Tarkhanova, I.G., Udalova, O.V., Kozhevin, V.M., Yavsin, D.A., and Gurevich, S.A., Russ. J. Phys. Chem. A, 2021, vol. 95, no. 3, pp. 451–474. https://doi.org/10.1134/S0036024421030171

    Article  CAS  Google Scholar 

  75. Gerola, A.P., Costa, P.F.A., Quina, F.H., Fiedler, H.D., and Nome, F., Curr. Opin. Colloid Interface Sci., 2017, vol. 32, pp. 39–47. https://doi.org/10.1016/j.cocis.2017.10.002

    Article  CAS  Google Scholar 

  76. Mayank, M., Singh, A., Raj, P., Kaur, R., Singh, A., Kaur, N., and Singh, N., New J. Chem., 2017, vol. 41, no. 10, pp. 3872–3881. https://doi.org/10.1039/C6NJ03763A

    Article  CAS  Google Scholar 

  77. Tarkhanova, I.G., Anisimov, A.V., Buryak, A.K., Bryzhin, A.A., Ali-Zade, A.G., Akopyan, A.V., and Zelikman, V.M., Pet. Chem., 2017, vol. 57, no. 5, pp. 859–867. https://doi.org/10.1134/S0965544117100164

    Article  CAS  Google Scholar 

  78. Akopyan, A.V., Eseva, E.A., Polikarpova, P.D., Kedalo, A.A., Anisimov, A.V., Mosc. Univ. Chem. Bull., 2021, vol. 62, no. 4, pp. 215–223. https://doi.org/10.3103/S0027131421030020

    Article  Google Scholar 

  79. Akopyan, A.V., Eseva, E.A., Arzyaeva, N.V., Talanova, M.Yu., and Polikarpova, P.D., Pet. Chem., 2022, vol. 62, no. 1, pp. 94–100. https://doi.org/10.1134/S0965544122010169

    Article  CAS  Google Scholar 

  80. Akopyan, A., Polikarpova, P., Gul, O., Anisimov, A., and Karakhanov, E., Energy Fuels, 2020, vol. 34, no. 11, pp. 14611–14619. https://doi.org/10.1021/acs.energyfuels.0c02008

    Article  CAS  Google Scholar 

  81. PRC Patent 103509590, 2012.

  82. PRC Patent CN 105419853, 2012.

  83. PRC Patent 102585888, 2012.

  84. PRC Patent 102525453, 2012.

  85. PRC Patent 104312261, 2014.

  86. PRC Patent 105176570, 2008.

  87. RF Patent 2673539, 2018.

Download references

ACKNOWLEDGMENTS

The research was carried out within the framework of the Development Program of the Interdisciplinary Scientific and Educational School of Moscow University “The Future of the Planet and Global Environmental Changes” using equipment purchased under the Development Program of Moscow University.

Funding

The studies were carried out within the framework of the State assignment of the Moscow State University (project nos. АААА-А21-121011590090-7 and 121031300092-6) and with the financial support of the Russian Foundation for Basic Research (project no. 19-33-90024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Tarkhanova.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarkhanova, I.G., Bryzhin, A.A., Anisimov, A.V. et al. Heterogeneous Catalytic Processes of Oxidative Desulfurization with Participation of Ionic Liquids. A Review. Dokl Chem 508, 37–55 (2023). https://doi.org/10.1134/S0012500823600098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500823600098

Keywords:

Navigation