Log in

Simulation of an Autonomous Navigation Method for Determining the Orbit and Orientation of Spacecraft from Virtual Measurements of Stellar Zenith Distances

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

A description of a new method of autonomous navigation for determining the orbits and orientation of artificial Earth satellites is presented. The method is based on the sighting of selected stars by optoelectronic devices, from which the virtual zenith angles of the stars are calculated. We consider various orbits to which these measurements are applied, as well as solutions to the problems of navigation and orientation of artificial Earth satellites for navigation satellites of the GLONASS system. The possibility of synchronization of spacecraft time scales based on the reception of pulsar signals is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Porfir’ev, L.F., Smirnov, V.V., and Kuznetsov, V.I., Analiticheskie otsenki tochnosti avtonomnykh metodov opredeleniya orbit (Analytical Estimates of the Accuracy of Autonomous Methods for Determining Orbits), Moscow: Mashinostroenie, 1987.

  2. Kuznetsov, V.I., Avtomatizirovannaya sistema nauchnykh issledovanii metodov i algoritmov avtonomnoi navigatsii i orientatsii kosmicheskikh apparatov (Automated System for Scientific Research of Methods and Algorithms for Autonomous Navigation and Orientation of Spacecraft), St. Petersburg: VKA im. A.F. Mozhaiskogo, 2010.

  3. Kuznetsov, V.I. and Danilova, T.V., Teoriya i praktika navigatsionnogo obespecheniya primeneniya VS RF. Chast’ 2. Avtonomnaya astronomicheskaya navigatsiya i orientatsiya kosmicheskikh apparatov: monografiya (Theory and Practice of Navigation Support for the Use of the RF Armed Forces. Part 2. Autonomous Astronomical Navigation and Spacecraft Orientation: Monograph), St. Petersburg: Voen.-Kosm. Akad. im. A.F. Mozhaiskogo, 2015.

  4. Kuznetsov, V.I. and Danilova, T.V., A system of autonomous navigation and orientation for satellites based on virtual measurements of zenith distances of stars, Cosmic Res., 2011, vol. 49, no. 6, pp. 538–545.

    Article  ADS  Google Scholar 

  5. Kuznetsov, V.I., Danilova, T.V., and Kosulin, D.M., RF Patent 2454631, IPC G01C 21/02, 2012.

  6. Kuznetsov, V.I. and Danilova, T.V., Multifunctional astronomical self-organizing system of autonomous navigation and orientation for artificial Earth satellites, Cosmic Res., 2017, vol. 55, no. 2, pp. 142–158.

    Article  ADS  Google Scholar 

  7. Kuznetsov, V.I., Danilova, T.V., and Arkhipova, M.A., The main results of the application of an automated system for scientific research of methods and algorithms for autonomous navigation and orientation of spacecraft, Naukoemk. Tekhnol. Kosm. Issled. Zemli, 2018, vol. 10, no. 1, pp. 4–13.

    Google Scholar 

  8. Kuznetsov, V.I., Danilova, T.V., and Arkhipova, M.A., autonomous method for determining estimates of the orbit and orientation parameters of a spacecraft in the absence of a priori information, Trudy shestoi Vserossiiskoi konferentsii “Fundamental’noe i prikladnoe koordinatno-vremennoe i navigatsionnoe obespechenie” (KVNO-2015) (Proc. Sixth All-Russ. Conf. “Fundamental and Applied Coordinate-Time and Navigation Support” KVNO-2015), Trudy Instituta prikladnoi astronomii RAN (Proceedings of the Institute of Applied Astronomy RAS), vol. 38, St. Petersburg: Inst. Prikl. Astron. Ross. Akad. Nauk, 2016.

  9. Kuznetsov, V.I. and Danilova, T.V., Autonomous astronomical navigation and tracking system, Izv. Vyssh. Uchebn. Zaved., Priborostr., 2015, vol. 58, no. 8.

  10. Kuznetsov, V.I., Danilova T.V., Arkhipova, M.A., RF Patent 2624408, IPC G01C 21/24, 2017.

  11. Kuznetsov, V.I., System for autonomous determination of the orbits of spacecraft of satellite radio navigation systems, Izv. Vyssh. Uchebn. Zaved., Priborostr., 2008, vol. 51, no. 5, pp. 3–9.

    Google Scholar 

  12. Kuznetsov, V.I., Danilova, T.V., Kosulin, D.M., and Arkhipova, M.A., RF Patent 2542599, IPC G01C 21/02, 2015.

  13. Kuznetsov, V.I., Danilova, T.V., Arkhipova, M.A., and Maslova, M.A., Astronomical system for autonomous navigation and orientation of spacecraft for general purposes, Trudy sed’moi Vserossiiskoi konferentsii “Fundamental’noe i prikladnoe koordinatno-vremennoe i navigatsionnoe obespechenie” (Proc. 7th All-Russ. Conf. “Fundamental and Applied Coordinate-Time and Navigation Support”), Inst. Appl. Astron., Russ. Acad. Sci., 2018.

  14. Kuznetsov, V.I. and Danilova, T.V., Multifunctional astronomical self-organizing system of autonomous navigation and orientation for artificial Earth satellites, Cosmic Res., 2017, vol. 55, no. 2, pp. 142–158.

    Article  ADS  Google Scholar 

  15. Kuznetsov, V.I., Kalashnikov, S.D., and Miklin, D.V., Method of accuracy characteristics of the system of autonomous navigation and orientation of spacecrafts, Izv. Vyssh. Uchebn. Zaved., Priborostr., 2020, vol. 63, no. 1, pp. 35–44.

    Google Scholar 

  16. Kuznetsov, V.I. and Kalashnikov, S.D., Application of the method of virtual measurements of the zenith distances of stars in solving the problem of orientation, Izv. Vyssh. Uchebn. Zaved., Priborostr., 2021, vol. 64, no. 4, pp. 245–254.

    Google Scholar 

  17. Smolitskii, Kh.L., Kuznetsov, V.I., and Danilova, T.V., Model of the optical builder of the local satellite vertical, Izv. Vyssh. Uchebn. Zaved., Priborostr., 2005, vol. 48, no. 5, pp. 45–52.

    Google Scholar 

  18. Kopeikin, S.M., Relativistic frames of reference in the Solar System, Astron. Zh., 1989, vol. 66, no. 5, p. 1089.

    ADS  Google Scholar 

  19. Kopeikin, S.M., Asymptotic matching of gravitational fields in the Solar System, Astron. Zh., 1989, vol. 66, no. 6, pp. 1289–1295.

    ADS  MathSciNet  Google Scholar 

  20. Kopeikin, S.M., Theory of relativity in radio space observations, Astron. Zh., 1990, vol. 66, no. 6, pp. 1289–1295.

    ADS  Google Scholar 

  21. Kopeikin, S.M., On the method of solving external and internal problems in the problem of motion of bodies in general relativity, Sbornik Trudov GAISh (Collection of Works of Steinberg Astronomical Institute), 1988, vol. 59, pp. 53–65.

    Google Scholar 

  22. Brumberg, V.A. and Kopeikin, S.M., Relativistic equations of motion of an Earth satellite in a geocentric frame of reference, Kinematika Fiz. Nebesnykh Tel, 1988, vol. 5, no. 1, pp. 3–8.

    ADS  MathSciNet  Google Scholar 

  23. Doroshenko, O.V. and Kopeikin, S.M., Algorithm for high-precision phase analysis of observations of single pulsars, Astron. Zh., 1990, vol. 67, no. 5, pp. 986–998.

    ADS  Google Scholar 

  24. Kuznetsov, V.I., Substantiation of the method for solving the problem of autonomous determination of spacecraft motion parameters based on mutual processing of the results of measurements of pulsar radiation, Trudy Voen.-Kosm. Akad., 2019, no. 667, pp. 110–121.

  25. Avanesov, G.A., Bessonov, R.V., and Dement’ev, V.Yu., The results of testing the software of the star orientation device BOKZ-M60/1000 on the dynamic test bench, Sbornik trudov Tret’ei Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Sovremennye problemy orientatsii i navigatsii kosmicheskikh apparatov” (Proc. Third All-Russ. Sci. Tech. Conf. “Modern Problems of Spacecraft Orientation and Navigation”), Avanesov, G.A., Ed., Moscow: Inst. Kosm. Issled. Ross. Akad. Nauk, 2013.

  26. Akim, E.L. and Eneev, T.M., Determination of motion parameters of a spacecraft from trajectory measurements, Kosm. Issled., 1963, vol. 1, no. 1, pp. 5–50.

    Google Scholar 

  27. Eneev, T.M., Ivashkin, V.V., Sharov, V.A., and Bagdasaryan, Ju.V., Space autonomous navigation system of Soviet project for manned fly by Moon, Acta Astronaut., 2010, vol. 66, pp. 341–347.

    Article  ADS  Google Scholar 

  28. Ivashkin, V.V. and Zadykhina, L.I., Analysis of satellite autonomous navigation when sighting unknown landmarks, Kosm. Issled., 1988, vol. 26, no. 5, pp. 680–698.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Kalashnikov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.I., Kalashnikov, S.D. & Nagovitsyna, A.N. Simulation of an Autonomous Navigation Method for Determining the Orbit and Orientation of Spacecraft from Virtual Measurements of Stellar Zenith Distances. Cosmic Res 60, 469–475 (2022). https://doi.org/10.1134/S0010952522060065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952522060065

Navigation