Log in

Equilibrium Composition of Products in a Hafnium Dioxide–Calcium–Nitrogen–Carbon Mixture at Adiabatic Combustion Temperature

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents the results of thermodynamic calculation of adiabatic temperature and the equilibrium composition of products of HfO2 reduction with calcium depending on carbon and calcium content at different pressures. The formation of solid HfN–HfC solutions is identified with the formation of hafnium carbonitride. It is shown that adiabatic temperatures lie in a range of 2000–2900 K, and its elevation is limited by the melting of CaO at 2900 K. The introduction of carbon often reduces the adiabatic temperature, and a pressure rise leads to its increase. A connection is revealed between the composition of products and the type of temperature curves. The main reason why adiabatic temperature rises along with pressure is a displacement of equilibrium toward the formation of condensed phases and an increase in the fraction of HfN in the products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. V. I. Kostikov and A. N. Varenkov, Ultra-High-Temperature Composite Materials (Intermet Inzhiniring, Moscow, 2003) [in Russian].

    Google Scholar 

  2. Promising Materials and Technologies for Rock and Space Equipment, Ed. by A. A. Berlin and I. G. Assovskii (Torus Press, Moscow, 2007) [in Russian].

    Google Scholar 

  3. W. G. Fahrenholtz, E. J. Wuchina, W. E. Lee, et al., Ultra-High Temperature Ceramics (John Wiley & Sons, Hoboken, 2014).

    Book  Google Scholar 

  4. J. Binner, M. Porter, B. Baker, et al., “Selection, Processing, Properties and Applications of Ultra-High Temperature Ceramic Matrix Composites, UHTCMCs—A Review," Int. Mater. Rev. 65 (7), 389–444 (2020); DOI: 10.1080/09506608.2019.1652006.

    Article  ADS  Google Scholar 

  5. A. Nisar, C. Zhang, B. Boesl, A. Agarwal, “A Perspective on Challenges and Opportunities in Develo** High Entropy-Ultra High Temperature Ceramics," Ceram. Int. 46 (16), Pt. A, 25845–25853 (2020); DOI: 10.1016/j.ceramint.2020.07.066.

    Article  Google Scholar 

  6. O. F. Dippo et al., “Bulk High-Entropy Nitrides and Carbonitrides," Sci. Rep. 10, 21288 (2020); DOI: 10.1038/s41598-020-78175-8.

    Article  ADS  Google Scholar 

  7. Z. Peng, W. Sun, X. **ong, et al., “Novel Nitrogen-Doped Hafnium Carbides for Advanced Ablation Resistance up to 3273 K," Corros. Sci. 189, 109623 (2021); DOI: 10.1016/j.corsci.2021.109623.

    Article  Google Scholar 

  8. V. S. Buinevich, A. A. Nepapushev, D. O. Moskovskikh, et al., “Fabrication of Ultra-High-Temperature Nonstoichiometric Hafnium Carbonitride via Combustion Synthesis and Spark Plasma Sintering," Ceram. Int. 46 (10B), 16068–16073 (2020); DOI: 10.1016/j.ceramint.2020.03.158.

    Article  Google Scholar 

  9. V. S. Buinevich, A. A. Nepapushev, D. O. Moskovskikh, et al., “Mechanochemical Synthesis and Spark Plasma Sintering of Hafnium Carbonitride Ceramics," Adv. Powder Technol. 32 (2), 385–389 (2021); DOI: 10.1016/j.apt.2020.12.018.

    Article  Google Scholar 

  10. V. S. Buinevich, A. A. Nepapushev, D. O. Moskovskikh, K. V. Kuskov, et al., “Ultra-High-Temperature Tantalum–Hafnium Carbonitride Ceramics Fabricated by Combustion Synthesis and Spark Plasma Sintering," Ceram. Int. 47 (21), 30043–30050 (2021); DOI: 10.1016/j.ceramint.2021.07.180.

    Article  Google Scholar 

  11. S. N. Yudin, A. V. Kasimtsev, S. S. Volodko, et al., “Low-Temperature Synthesis of Ultra-High-Temperature HfC and HfCN Nanoparticles," Materialia 22, 101415 (2022); DOI: 10.1016/j.mtla.2022.101415.

    Article  Google Scholar 

  12. V. M. Orlov, M. V. Kryzhanov, A. G. Leshchinskaya, et al., “Production and Physico-Chemical Properties of Calciothermic Zirconium Powder As a Component of Pyrotechnical Compositions," Fiz. Goreniya Vzryva 58 (3), 128–132 (2022) [Combust., Expl., Shock Waves 58 (3), 372–375 (2022); DOI: 10.1134/S0010508222030133].

    Article  Google Scholar 

  13. B. G. Trusov, “Code System for Simulation of Phase and Chemical Equilibriums at Higher Temperatures," Vest. Mosk. Gos. Tekh. Univ. Baumana. Ser. Priborostroenie 1 (1), 240–249 (2012); http://engjournal.ru/articles/31/31.pdf; DOI: 10.18698/2308-6033-2012-1-31.

    Article  Google Scholar 

  14. G. V. Belov and B. G. Trusov, Thermodynamic Modeling of Chemically Reacting Systems (Bauman Moscow State Tech. Univ., Moscow, 2013) [in Russian]; https://ihed.ras.ru/\(\sim\)thermo/MU-Belov-Trusov.pdf.

    Google Scholar 

  15. E. M. Dorofeenko, S. I. Soglasnova, G. N. Nechiporenko, and D. B. Lempert, “Optimization of the Binder Formulation to Increase the Energetic Performance of Polynitrogen Oxidizers in Metal-Free Compositions," Fiz. Goreniya Vzryva 54 (6), 78–84 (2018) [Combust., Expl., Shock Waves 54 (6), 698–703 (2018); DOI: 10.1134/S0010508218060096].

    Article  Google Scholar 

  16. A. A. Glazunov, Yu. M. Maksimov, A. N. Avramchik, and B. Sh. Braverman, “Effect of the Fluid–Vapor Phase Transition in the Combustion of Calcium with Iron Trifluoride," Fiz. Goreniya Vzryva 56 (1), 59–64 (2020) [Combust., Expl., Shock Waves 56 (1), 51–56 (2020); DOI: 10.1134/S0010508220010062].

    Article  Google Scholar 

  17. B. Braverman, A. Avramchik, O. Kryukova, and Yu. Maksimov, “Effect of Pressure on the Joint Reduction of ZrO2 and B2O3 with Calcium," in Proc. 7th Int. Congress on Energy Fluxes and Radiation Effects (EFRE), 1260–1262 (2020); DOI: 10.1109/EFRE47760.2020.9241893.

  18. N. M. Barbin, M. A. Shumilova, and O. Yu. Goncharov, “Thermodynamic Modeling of High-Temperature Behavior of Sodium and Potassium Arsenites," Khim. Fiz. Mezoskop. 24 (3), 400–407 (2022); DOI: 10.15350/17270529.2022.3.33.

    Article  Google Scholar 

  19. N. M. Barbin, A. M. Kobelev, S. A. Titov, and D. I. Terent’ev, “Thermodynamic Analysis of Compositions of Combustion Products of Radioactive Graphite in Water Vapor or Air," Fiz. Goreniya Vzryva 58 (4), 24–31 (2022) [Combust., Expl., Shock Waves 58 (4), 415–421 (2022); DOI: https://doi.org/10.1134/S0010508222040037].

    Article  Google Scholar 

  20. Yu. M. Maksimov, B. Sh. Braverman, A. N. Avramchik, and A. M. Shulpekov, “Combustion of ZrO2–Ca and TiO2–Ca Mixtures in Nitrogen," J. Phys.: Conf. Ser. 1214, 012015 (2019); DOI: 10.1088/1742-6596/1214/1/012015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Avramchik.

Additional information

Translated from Fizika Goreniya i Vzryva, 2024, Vol. 60, No. 1, pp. 71-76. https://doi.org/10.15372/FGV20240107.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avramchik, A.N., Braverman, B.S. Equilibrium Composition of Products in a Hafnium Dioxide–Calcium–Nitrogen–Carbon Mixture at Adiabatic Combustion Temperature. Combust Explos Shock Waves 60, 64–69 (2024). https://doi.org/10.1134/S0010508224010076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508224010076

Keywords

Navigation