Log in

Structure of Detonation Waves in Mixtures of Tetranitromethane with Acetone

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The structure of detonation waves in mixtures of tetranitromethane with acetone was studied experimentally using a VISAR interferometer and a NANOGATE-22 electron-optical camera. At a diluent concentration of 10–40%, there was a sharp change in the flow pattern in the reaction zone, manifested in a decrease in the amplitude of the von Neumann spike up to its complete disappearance. The detonation waves are stable in almost the entire range of concentrations, except in the range near the critical value of 52%. Near the critical concentration, the waves become unstable, resulting in the formation of both the cellular structure of the detonation front and reaction failure waves on the boundary with the shell. The obtained experimental dependences of the detonation velocity on acetone concentration are in good agreement with thermodynamic calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. V. M. Mochalova, A. V. Utkin, V. A. Garanin, and S. I. Torunov, “Structure of Detonation Waves in Tetranitromethane and Its Mixtures with Methanol," Fiz. Goreniya Vzryva 45 (3), 95–100 (2009) [Combust., Expl., Shock Waves 45 (3), 320–325 (2009)].

    Article  Google Scholar 

  2. A. V. Utkin, V. M. Mochalova, A. M. Astakhov, V. E. Rykova, and S. A. Koldunov, “Structure of Detonation Waves in Mixtures of Tetranitromethane with Nitrobenzene and Methanol," Fiz. Goreniya Vzryva 56 (5), 69–79 (2020) [Combust., Expl., Shock Waves 56 (5), 556–565 (2020); https://doi.org/10.1134/S001050822005007X].

    Article  Google Scholar 

  3. A. V. Utkin, V. M. Mochalova, and V. E. Rykova, “Reproducibility of Detonation Parameters of Mixtures of Tetranitromethane with Methanol and Nitrobenzene," Fiz. Goreniya Vzryva 54 (3), 97–103 (2021) [Combust., Expl., Shock Waves 54 (3) 343–349 (2021); https://doi.org/10.1134/S0010508221030096].

    Article  Google Scholar 

  4. E. V. Zotov, Electric-Spark Initiation of Liquid Explosives (VNIIEF, Sarov 2004) [in Russian].

    Google Scholar 

  5. A. V. Fedorov, A. L. Mikhaylov, A. V. Men’shikh, et al., “On the Stability of the Detonation Wave Front in the High Explosive Liquid Mixture Tetranitromethane/Nitrobenzene," J. Energ. Mater. 28 (N (S1)), 205–215 (2010); DOI: 10.1080/07370651003639371.

    Article  ADS  Google Scholar 

  6. A. I. Apin, I. M. Voskoboinikov, and G. S. Sosnova, “Reaction in the Detonation Wave of Composite Explosives," Prikl. Mekh. Tekh. Fiz., No. 5 115–117 (1963).

    Google Scholar 

  7. A. V. Fedorov, A. L. Mikhailov, A. V. Men’shikh, D. V. Nazarov, S. A. Finyushin, and V. A. Davydov, “On the Stability of the Detonation Front in Tetranitromethane–Nitrobenzene and Tetranitromethane–Nitromethane Liquid Composite HEs," Khim. Fiz. 26 (12), 34–39 (2007) [Russ. J. Phys. Chem. B 1, 600–605 (2007); https://doi.org/10.1134/S1990793107060140].

    Article  Google Scholar 

  8. A. N. Dremin, S. D. Savrov, V. S. Trofimov, and K. K. Shvedov, Detonation Waves in Condensed Media (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  9. V. Mochalova and A. Utkin, “Determination of De tonation Parameters for Liquid High Explosives," AIP Conf. Proc. 1426 (1), 303–306 (2012); DOI: 10.1063/1.3686279.

  10. E. Bourasseau, V. Dubois, N. Desbiens, and J. B. Maillet, “Molecular Simulations of Hugoniots of Detonation Product Mixtures at Chemical Equilibrium: Microscopic Calculation of the Chapman–Jouguet State," J. Chem. Phys. 127 (8), 084513 (2007); DOI: 10.1063/1.2766939.

    Article  ADS  Google Scholar 

  11. C. L. Mader, Numerical Modeling of Explosives and Propellants (CRC Press, Boca Raton, 2008).

    Google Scholar 

  12. S. A. Gubin, B. V. Odintsov, and V. I. Pepekin, “Thermodynamic Calculation of Ideal and NonIdeal Detonation," Fiz. Goreniya Vzryva 23 (4), 75–84 (1987) [Combust., Expl., Shock Waves 23 (4), 446–454 (1987)].

    Article  Google Scholar 

  13. L. E. Fried and P. C. Souers, “BKWC: An Empirical BKW Parametrization Based on Cylinder Test Data," Propell., Explos., Pyrotech. 21 (4), 215–223 (1996); DOI: 10.1002/prep.19960210411.

    Article  Google Scholar 

  14. N. V. Kozyrev, “Reparametrization of the BKW Equation of State for CHNO Explosives Which Release no Condensed Carbon upon Detonation," Center. Eur. J. Energ. Mater. 12 (4), 651–669 (2015).

    Google Scholar 

  15. V. V. Odintsov, C. A. Gubin, V. I. Pepekin, and L. N. Akimova, “Determination of the Shape and Size of Diamond Crystals behind a Detonation Wave in Condensed Explosives," Khim. Fiz. 10 (5), 687–695 (1991).

    Google Scholar 

  16. Yu. B. Khariton, “Detonability of Explosives," in Problems of Explosives Theory (collected papers) (Izd. Akad. Nauk SSSR, Moscow–Leningrad, 1947), Book 1, pp. 7–28.

  17. J. O. Hirschfelder and C. F. Curtiss, “Theory of Detonations. I. Irreversible Unimolecular Reaction," J. Chem. Phys. 28 (6), 1130–1147 (1958); DOI: 10.1063/1.1744357.

    Article  ADS  MathSciNet  Google Scholar 

  18. F. M. Williams, Combustion Theory (CRC Press, 2018).

    Book  Google Scholar 

  19. W. Fickett, Introduction to Detonation Theory (Univ. of California Press, 1985), Vol. 5.

    Book  MATH  Google Scholar 

  20. A. N. Dremin, “Discoveries in Detonation of Molecular Condensed Explosives in the 20th Century," Fiz. Goreniya Vzryva 36 (6), 31–44 (2000) [Combust., Expl., Shock Waves 36 (6), 704–715 (2000); https://doi.org/10.1023/A:1002846521218].

    Article  Google Scholar 

  21. A. V. Utkin, V. M. Mochalova, S. I. Torunov, and S. A. Koldunov, “Instability of Detonation Waves in Nitromethane and FIFO," Fiz. Goreniya Vzryva 51 (4), 87–93 (2015) [Combust. Expl. Shock Waves 51 (4), 476–481 (2015); https://doi.org/10.1134/S0010508215040127].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Utkin.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 4, pp. 122-130. https://doi.org/10.15372/FGV20230414.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utkin, A.V., Mochalova, V.M., Astakhov, A.M. et al. Structure of Detonation Waves in Mixtures of Tetranitromethane with Acetone. Combust Explos Shock Waves 59, 508–515 (2023). https://doi.org/10.1134/S0010508223040147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223040147

Keywords

Navigation