Log in

Convective Combustion of a Mechanically Activated Ti + C Mixture under Forced SHS Compaction

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Effect of mechanical activation of components and external pressure on the combustion of a heterogeneous Ti + C mixture under SHS compaction is under study. It is shown that the presence of pressure (15 MPa) results in low-rate layered combustion (4–7 cm/s) and the absence of any external pressure causes unsteady combustion at a high burning rate (50–70 cm/s), namely surface-annular combustion and volumetric combustion, both based on convective heat and mass transfer. This paper proposes a mechanism for convective combustion at a high burning rate, based on the ignition of a heterogeneous mixture by a hot impurity gas released in a combustion wave and filtered through layered cracks and other macrodefects in the volume of charge compacts, which form during the pressing of powder mixtures. The mechanical activation of the reaction mixture components reduces the density and strength of the compacts and increases the efficiency of the formation of macrodefects. External pressure has the opposite effect as it prevents crack formation and the propagation of hot impurity gas through cracks. The consolidated samples of titanium carbide with a relative density of up to 95% are obtained in volumetric combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. A. G. Merzhanov, Solid Flame Combustion (Merzhanov Inst. of Struct. Macrokinet. and Mater. Sci., Russian Acad. of Sci., Chernogolovka, 2000) [in Russian].

    Google Scholar 

  2. E. A. Levashov, A. S. Rogachev, V. V. Kurbatkina, et al., Promising Materials and Technologies for Self-Propagating High-Temperature Synthesis (Izd. Dom MISiS, Moscow, 2011) [in Russian].

    Google Scholar 

  3. A. S. Rogachev and A. S. Mukas’yan, Combustion for Synthesis of Materials: Introduction to Structural Macrokinetics (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  4. G. F. Tavadze and A. S. Shteinberg, Production of Advanced Materials by Methods of Self-Propagating High-Temperature Synthesis (Springer, Berlin–Heidelberg, 2013); DOI: 10.1007/978-3-642-35205-8.

    Book  Google Scholar 

  5. A. N. Pityulin, “Forced Compaction in SHS Processes," in Self-Propagating High-Temperature Synthesis: Theory and Practice (Territoriya, Chernogolovka, 2001) [in Russian].

  6. V. L. Kvanin and N. T. Balikhina, “Preparation of Large-Sized Products—One of the Technological Directions Using the SHS Process," Izv. Vyssh. Uchebn. Zaved., Tsv. Metallurg., No. 5, 50–61 (2006).

  7. V. A. Scherbakov, A. N. Gryadunov, and M. I. Alymov, “Synthesis and Characteristics of B4C–TiB2," Compos. Adv. Mater. Technol., No. 4, 16–21 (2016); DOI: 10.17277/amt.2016.04.pp.016-021.

  8. Yu. V. Bogatov, V. A. Shcherbakov, and A. E. Sychev, “Self-Propagating High-Temperature Synthesis Pressing of Composites Based on the TiB2–B4C–Al System," Neorg. Mater. 58 (5), 548–553 (2022) [Inorg. Mater. 58 (5), 525–530 (2022); DOI: https://doi.org/10.1134/S0020168522050016].

    Article  Google Scholar 

  9. B. S. Seplyarskii and S. G. Vadchenko, “Role of Convective Heat Transfer in Gasless Combustion by the Example of Combustion of the Ti–C System," Dokl. Akad. Nauk 398 (1), 72–76 (2004) [Dokl. Phys. Chem. 398 (1), 203–207 (2004); DOI: https://doi.org/10.1023/B:DOPC.0000041487.87644.26].

    Article  Google Scholar 

  10. V. A. Shcherbakov, A. E. Sychev, and A. S. Shteinberg, “Outgassing Macrokinetcs in SPS," Fiz. Goreniya Vzryva 22 (4), 55–61 (1986) [Combust., Expl., Shock Waves 22 (4), 437–443 (1986); DOI: https://doi.org/10.1007/BF00862888].

    Article  Google Scholar 

  11. E. A. Levashov, V. V. Kurbatkina, and K. V. Kolesnichenko, “Influence of Preliminary Mechanical Activation on the Reactivity of Titanium Based SHS Mixtures," Izv. Vyssh. Uchebn. Zaved., Tsv. Metallurg., No. 6, 61–67 (2000).

  12. N. A. Kochetov, A. S. Rogachev, and Yu. S.‘Pogozhev, “The Effect of Mechanical Activation of a Reaction Mixture on the Velocity of the Wave Propagation of SHS Reactions and Microstructure of the TiC-Ni Hard Alloy," Izv. Vyssh. Uchebn. Zaved., Poroshk. Metallurg. Funkts. Pokr., No. 3, 31–35 (2009) [Russ. J. Non-Ferrous Metals 51, 177–181 (2010)]; DOI: https://doi.org/10.3103/S1067821210020197.

    Article  Google Scholar 

  13. Yu. V. Bogatov, V. A. Shcherbakov, and I. D. Kovalev, “Influence of the Mechanical Activation of a Titanium–Carbon Mixture on SHS Pressing Parameters and the Consolidated Titanium Carbide Microstructure," Izv. Vyssh. Uchebn. Zaved., Poroshk. Metallurg. Funkts. Pokr. 15 (1), 38–46 (2021) [Russ. J. Non-Ferrous Metals 62, 585–591 (2021); DOI: https://doi.org/10.3103/S1067821221050011].

    Article  Google Scholar 

  14. Yu. V. Bogatov, V. A. Shcherbakov, and O. D. Boyarchenko, “Preparation of Dense TiB2 by Forced Self-Propagating High-Temperature Synthesis Compaction with Mechanical Activation of Reagents," Neorg. Mater. 57 (10), 1122–1127 (2021) [Inorg. Mater. 57 (10), 1061–1066 (2021); DOI: https://doi.org/10.1134/S0020168521100010].

    Article  Google Scholar 

  15. N. V. Shadrinov, E. A. Kapitonov, M. D. Sokolova, et al., “Effect of Carbon Black Activation on Physicomechanical Properties of Butadiene-Nitrile Rubber," Persp. Mater., No. 8, 50–55 (2014) [Bull. Korean Chem. Soc. 35 (10), 2891–2894 (2014); DOI: http://dx.doi.org/10.5012/bkcs.2014.35.10.2891].

    Article  Google Scholar 

  16. S. S. Kiparisov and G. A. Libenson, Powder Metallurgy (Metallurgiya, Moscow, 1991) [in Russian].

    Google Scholar 

  17. S. A. Saltykov, Stereometric Metallography: Study Guide (Metallurgiya, Moscow, 1976) [in Russian].

    Google Scholar 

  18. A. G. Merzhanov, Combustion Processes and Synthesis of Materials (Merzhanov Inst. of Struct. Macrokinet. and Mater. Sci., Russian Acad. of Sci., Chernogolovka, 1998) [in Russian].

    Book  Google Scholar 

  19. V. N. Nikogosov, G. A. Nersesyan, V. A. Shcherbakov, et al., “Influence of a Blowing Agent on Mechanisms of Combustion and Degassing in a Titanium–Carbon Black System," Int. J. Self-Propag. High-Temp. Synth. 8 (3), 321–329 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shcherbakov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 3, pp. 109-117. https://doi.org/10.15372/FGV20230310.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogatov, Y.V., Shcherbakov, V.A. Convective Combustion of a Mechanically Activated Ti + C Mixture under Forced SHS Compaction. Combust Explos Shock Waves 59, 353–361 (2023). https://doi.org/10.1134/S0010508223030103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223030103

Keywords

Navigation