Log in

Interaction of Cellular Detonation in Aluminum Particle Suspensions with Nonuniform Concentrations and Clouds of Inert Particles

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The processes of attenuation and suppression of detonation in gas suspensions of aluminum particles by extended clouds of inert particles are studied on the basis of numerical simulations of two-dimensional flows. The normalized detonation velocity is found as a function of the concentration of inert particles. The conditions of detonation failure are determined for non-stoichiometric mixtures with oxygen and for the case with concentration gradients across the channel. It is demonstrated that a one-dimensional approach has certain limitations in determining the detonation failure criteria because transverse waves of cellular detonation favor its re-initiation. Sufficient conditions of detonation suppression for 1-\(\mu\)m particles are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

REFERENCES

  1. M. W. Beckstead, “Correlating Aluminum Burning Times," Fiz. Goreniya Vzryva 41 (5), 55–69 (2005) [Combust., Expl., Shock Waves 41 (5), 533–546 (2005)].

    Article  Google Scholar 

  2. A. M. Starik, P. S. Kuleshov, A. S. Sharipov, et al., “Numerical Analysis of Nanoaluminum Combustion in Steam," Combust. Flame 161 (6), 1659–1667 (2014); DOI: 10.1016/ j.combustflame.2013.12.007.

    Article  Google Scholar 

  3. R. B. Moussa, C. Proust, M. Guessasma, et al., “Physical Mechanisms Involved into the Flame Propagation Process through Aluminum Dust–Air Clouds: A Review," J. Loss Prev. Process Ind. 45, 9–28 (2017); DOI: 10.1016/j.jlp.2016.11.010.

    Article  Google Scholar 

  4. W. Yu, S. Li, M. Liu, et al., “Effect of Oxidant Concentration on the Combustion Characteristics of Aluminum Particle-Laden Flow," Powder Technol. 389, 235–242 (2021); DOI: 10.1016/j.powtec.2021.05.035.

    Article  Google Scholar 

  5. X. Zou, N. Wang, J. Wang, et al., “A Numerical Investigation on Heterogeneous Combustion of Aluminum Nanoparticle Clouds," Aerospace Sci. Technol. 112, 106604 (2021). DOI: 10.1016/j.ast.2021.106604.

    Article  Google Scholar 

  6. J. Taveau, S. Hochgreb, S. Lemkowitz, and D. Roekaerts, “Explosion Hazards of Aluminum Finishing Operations," J. Loss Prev. Process Ind. 51, 84–93 (2018); DOI: 10.1016/j.jlp.2017.11.011.

    Article  Google Scholar 

  7. Q. **g, D. Wang, Q. Liu, et al., “Study on Transient Reaction Mechanism and Explosion Intensity Parameters of Micron-Sized Flake Aluminum Dust in Air," Chem. Eng. Sci. 246, 116884 (2021). DOI: 10.1016/j.ces.2021.116884.

    Article  Google Scholar 

  8. F. C. De Lucia, Jr, L. Giri, R. A. Pesce-Rodriguez, et al., “Commercial Aluminum Powders, Part I: Particle Size Characterization and Slow Heating Rate Thermal Analysis," Powder Technol. 399, 117162 (2022); DOI: 10.1016/j.powtec.2022.117162.

    Article  Google Scholar 

  9. A. V. Fedorov and T. A. Khmel, “Problems of Closing Models that Describe Detonation of Gas Suspensions of Ultrafine Aluminum Particles (Review)," Fiz. Goreniya Vzryva 55 (1), 3–20 (2019) [Combust., Expl., Shock Waves 55 (1), 1–17 (2019)].

    Article  Google Scholar 

  10. S. Zhang, M. Bi, H. Jiang, and W. Gao, “Suppression Effect of Inert Gases on Aluminum Dust Explosion," Powder Technol. 388, 90–99 (2021); DOI: 10.1016/j.powtec.2021.04.073.

    Article  Google Scholar 

  11. D. A. Tropin and I. A. Bedarev, “Physical and Mathematical Modeling of Interaction of Detonation Waves with Inert Gas Plugs," J. Loss Prev. Process Ind. 72, 104595 (2021). DOI: 10.1016/j.jlp.2021.104595.

    Article  Google Scholar 

  12. S. Zhang, M. Bi, H. Jiang, and W. Gao, “Inhibition Evaluation of Gas Inhibitors in Micron-Sized Aluminum Dust Explosion," J. Hazard. Mater. 393, 122524 (2020); DOI: 10.1016/j.jhazmat.2020.122524.

    Article  Google Scholar 

  13. I. A. Bedarev, “Micro-Level Modeling of the Detonation Wave Attenuation by Inert Particles," Thermal Sci. 23, S439–S445 2019); DOI: 10.2298/TSCI19S2439B.

    Article  Google Scholar 

  14. D. A. Tropin and A. V. Fedorov, “Mathematical Modeling of Detonation Wave Suppression by Cloud of Chemically Inert Solid Particles," Combust. Sci. Technol. 186 (10-11), 1690–1698 (2014); DOI: 10.1080/ 00102202.2014.935637.

    Article  Google Scholar 

  15. Y. Bu, C. Li, P. Amyotte, et al., “Moderation of Al Dust Explosions by Micro- and Nano-Sized Al2O3 Powder," J. Hazard. Mater. 381, 120968 (2020). DOI: 10.1016/jjhazmat.2019.120968.

    Article  Google Scholar 

  16. D. A. Tropin and S. A. Lavruk, “Physicomathematical modeling of Attenuation of Homogeneous and Heterogeneous Detonation Waves by Clouds of Water Droplets," Fiz. Goreniya Vzryva 58 (3), 80–90 (2022) [Combust., Expl., Shock Waves 58 (3), 327–336 (2022).

    Article  Google Scholar 

  17. A. V. Fedorov and Yu. V. Kratova, “Calculation of Detonation Wave Propagation in a Gas Suspension of Aluminum and Inert Particles," Fiz. Goreniya Vzryva 49 (3), 88–101 (2013) [Combust., Expl., Shock Waves 49 (3), 335–347 (2013)].

    Article  Google Scholar 

  18. Yu. V. Kratova and A. V. Fedorov, “Interaction of a Heterogeneous Detonation Wave Propagating in a Cellular Regime with a Cloud of Inert Particles," Fiz. Goreniya Vzryva 50 (2), 68–76 (2014) [Combust., Expl., Shock Waves 50 (2), 183–191 (2014)].

    Article  Google Scholar 

  19. S. A. Lavruk, “Investigation of Detonation Suppression in Aluminum Suspensions of Micro- and Nanoparticles by Inert Particle Clouds," AIP Conf. Proc. 2125 (1), 030082 (2019). DOI: 10.1063/1.5117464.

  20. S.‘A. Lavruk and D. A. Tropin, “Mathematical Model of the Interaction of a Heterogeneous Detonation Wave with a Suspension of Water Droplets," AIP Conf. Proc. 2288 (1), 030021 (2020). DOI: 10.1063/5.0028287.

  21. Z. Luan, Y. Huang, S. Gao, and Y. You, “Formation of Multiple Detonation Waves in Rotating Detonation Engines with Inhomogeneous Methane/Oxygen Mixtures under Different Equivalence Ratios," Combust. Flame 241, 112091 (2022). DOI: 10.1016/j.combustflame.2022.112091.

    Article  Google Scholar 

  22. T. Zhang, W. Sun, and Y. Ju, “Multi-Scale Modeling of Detonation Formation with Concentration and Temperature Gradients in n-Heptane/Air Mixtures," Proc. Combust. Inst. 36 (1), 1539–1547 (2017); DOI: 10.1016/j.proci.2016.06.192.

    Article  Google Scholar 

  23. T. A. Khmel and S. I. Tolkacheva, “Model of Reduced Kinetics for Describing Heterogeneous Detonation in Gas Particle Mixtures with Non-Uniform Concentration Distribution," J. Phys.: Conf. Ser. 1382, 012102 (2019); DOI: 10.1088/1742-6596/1382/1/012102.

    Article  Google Scholar 

  24. T. A. Khmel and S. A. Lavruk, “Detonation Flows in Aluminium Particle Gas Suspensions, Inhomogeneous in Concentrations," J. Loss Prev. Process Ind. 72, 104522 (2021). DOI: 10.1016/jjlp.2021.104522.

    Article  Google Scholar 

  25. T. A. Khmel, S. A. Lavruk, “Modeling of Cellular Detonation in Gas Suspensions of Submicron Aluminum Particles with Different Distributions of Concentration," Fiz. Goreniya Vzryva 58 (3), 3–18 (2022) [Combust., Expl., Shock Waves 58 (3), 253–268 (2022)].

    Article  Google Scholar 

  26. A. V. Fedorov, “Structure of Heterogeneous Detonation of Aluminum Particles Dispersed in Oxygen," Fiz. Goreniya Vzryva 28 (3), 72–83 (1992) [Combust., Expl., Shock Waves 28 (3), 277–286 (1992)].

    Article  Google Scholar 

  27. A. V. Fedorov and T. A. Khmel, “Numerical Simulation of Formation of Cellular Heterogeneous Detonation of Aluminum Particles in Oxygen," Fiz. Goreniya Vzryva 41 (4), 84–98 (2005) [Combust., Expl., Shock Waves 41 (4), 435–448 (2005)].

    Article  Google Scholar 

  28. B. Veyssiere and W. Ingignoli, “Existence of the Detonation Cellular Structure in Two-Phase Hybrid Mixtures," Shock Waves 12 (4), 291–299 (2003); DOI: 10.1007/s00193-002-0168-8.

    Article  ADS  Google Scholar 

  29. B. Veyssiere, B. A. Khasainov, and A. Briand, “Investigation of Detonation Initiation in Aluminium Suspensions," Shock Waves 18 (4), 307–315 (2008); DOI: 10.1007/s00193-008-0136-z.

    Article  ADS  MATH  Google Scholar 

  30. T. A. Khmel and A. V. Fedorov, “Modeling of Plane Detonation Waves in a Gas Suspension of Aluminum Nanoparticles," Fiz. Goreniya Vzryva 54 (2), 71–81 (2018) [Combust., Expl., Shock Waves 54 (2), 189–199 (2018)].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Khmel.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 3, pp. 61-73. https://doi.org/10.15372/FGV20230305.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khmel, T.A., Lavruk, S.A. Interaction of Cellular Detonation in Aluminum Particle Suspensions with Nonuniform Concentrations and Clouds of Inert Particles. Combust Explos Shock Waves 59, 308–320 (2023). https://doi.org/10.1134/S001050822303005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001050822303005X

Keywords

Navigation