Log in

The Specificity of Interactions between Endoinulinase from Aspergillus ficuum and Mono-, Di-, and Polysaccharides

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The aim of this study was to analyze the features of the spatial organization of the endoinulinase molecule from Aspergillus ficuum after its binding to mono-, di-, and polysaccharides. This study examined changes in volume and number of internal cavities upon binding of inulinase to mono- (glucose, fructose), di- (sucrose, mannose), and polysaccharides (inulin). Transformations in the quantity and length of tunnels and pores were described, and the reorganization of the composition and localization of charged and hydrophobic amino acid residues clusters on the surface of the enzyme molecule was analyzed. It was shown that the models of inulinase in the complex with sucrose (an alternative substrate) and mannose (an activator) exhibit the same types of internal structures. A similar pattern was found in the formation of complexes with fructose (a reaction product) and glucose (an inhibitor). In addition, it was established that both charged and hydrophobic clusters do not undergo significant changes in chemical composition after the binding of inulinase to mono-, di-, and polysaccharides, i.e., the interaction between inulinase and carbohydrates mentioned above primarily affects the internal structures of the enzyme. The specificity of the binding of inulinases to various ligands should be taken into account while develo** modern industrial biocatalysts based on inulinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. M. G. Holyavka, A. R. Kayumov, D. R. Baydamshina, et al., Int. J. Biol. Macromol. 115, 829 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. V. A. Abelyan and L. S. Manukyan, Biokhimiya 61 (6), 1028 (1996).

    CAS  Google Scholar 

  3. T. A. Kovaleva, M. G. Kholyavka, and V. G. Artyukhov, Biotechnol. Russ. 1, 43 (2012).

    Google Scholar 

  4. R. S. Singh, T. Singh, and C. Larroche, Bioresour. Technol. 273, 641 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. A. Mathur and D. Sadana, World J. Pharm. Pharm. Sci. 10 (4), 360 (2021).

    CAS  Google Scholar 

  6. Q. Meng, C. Lu, H. Gao, et al., Bioresour. Technol. 320, 124346 (2021).

  7. L. Zhang, C. Zhao, W. Y. Ohta, and Y. Wang, Process Biochem. 40 (5), 1541 (2005).

    Article  CAS  Google Scholar 

  8. R. I. Corona, A. Morales-Burgos, C. Pelayo, et al., Bioprocess Biosyst. Eng. 42, 1779 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. M. Germec and I. Turhan, Biomass Convers. Biorefin. 13 (6), 4727 (2021).

    Article  Google Scholar 

  10. D. Das, R. Selvaraj, and M. Ramananda Bhat, Biocatal. Agric. Biotechnol. 22, 101363 (2019).

  11. E. J. Vandamme and D. G. Derycke, Adv. Appl. Microbiol. 29, 139 (1983).

    Article  CAS  PubMed  Google Scholar 

  12. M. G. Holyavka, V. G Artyukhov, and T. A. Kovaleva, Biocatal. Biotransform. 34 (1), 1 (2016).

    Article  CAS  Google Scholar 

  13. Q. Sun, M. Arif, Z. Chi, et al., Int. J. Biol. Macromol. 169, 206 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. T. A. Kovaleva, M. G. Kholyavka, M. I. Kalashnikova, and D. A. Slivkin, Tekhnol. Zhivykh Sist. 1, 60 (2011).

    Google Scholar 

  15. M. G. Kholyavka and V. G. Artyukhov, Inulinases in Various Microenvironments: Biophysical, Kinetic and Structural-Functional Properties (Voronezh. Gos. Univ., Voronezh, 2018).

    Google Scholar 

  16. M. G. Holyavka, M. S. Kondratyev, A. A. Samchenko, et al., Comput. Biol. Med. 71, 198 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. L. Pravda, K. Berka, R. Svobodova-Vařekova, et al., BMC Bioinf. 15 (1), 379 (2014).

    Article  Google Scholar 

  18. G. P. Barletta and S. Fernandez-Alberti, J. Chem. Theory Comput. 14 (2), 998 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. J. Brezovsky, B. Kozlikova, and J. Damborsky, Protein Engineering. Methods in Molecular Biology, Ed. by U. Bornscheuer and M. Hohne (Humana Press, New York, 2018), Vol. 1685, pp. 25–42. https://doi.org/10.1007/978-1-4939-7366-8_3

    Book  Google Scholar 

  20. M. Petřek, P. Košinova, J. Koča, and M. Otyepka, Structure 15 (11), 1357 (2007).

    Article  PubMed  Google Scholar 

  21. A. Stank, D. B. Kokh, M. Horn, et al., Nucleic Acids Res. 45 (W1), W325 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S. E. D. Dias, A. M. Martins, Q. T. Nguyen, and A. J. P. Gomes, BMC Bioinf. 18 (1), 1 (2017).

  23. H. Li and Y. O. Kamatari, High Pressure Bioscience – Basic Concepts, Applications and Frontiers, Ed. by K. Akasaka and H. Matsuki (Springer-Verlag, 2015), pp. 237–257.

    Google Scholar 

  24. M. S. Mason, B.Y. Chen, and F. Jagodzinski, Molecules 23 (2), 351 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. S. Marques, J. Brezovsky, and J. Damborsky, Understanding Enzymes: Function, Design, Engineering, and Analysis (Jenny Stanford, New York, 2016).

  26. P. Kokkonen, D. Bednar, G. Pinto, et al., Biotechnol. Adv. 37 (6), 107386 (2019).

  27. T. Davids, M. Schmidt, D. Bottcher, and U. T. Bornscheuer, Curr. Opin. Chem. Biol. 17 (2), 215 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. A. Stank, D. B. Kokh, J. C. Fuller, and R. C. Wade, Acc. Chem. Res. 49 (5), 809 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. U. Sreenivasan and P. H. Axelsen, Biochemistry 51, 12785 (1992).

    Article  Google Scholar 

  30. D. Yu. Bogomolov, F. A. Sakibaev, M. G. Kholyavka, et al., Sorbtsionnye Khromatogr. Protsessy 21 (4), 555 (2021).

    CAS  Google Scholar 

  31. T. A. Kovaleva, M. G. Kholyavka, V. G Artyukhov, Biotechnol. Russ. 1, 43 (2012).

    Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation according to State Assignment for university research for 2023–2025, project no. FZGU-2023-0009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Holyavka.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by D. Timchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makin, S.M., Dubovitskaya, A.N., Bogomolov, D.Y. et al. The Specificity of Interactions between Endoinulinase from Aspergillus ficuum and Mono-, Di-, and Polysaccharides. BIOPHYSICS 68, 731–737 (2023). https://doi.org/10.1134/S0006350923050159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350923050159

Keywords:

Navigation