Log in

Free Radicals and Signal Transduction in Cells

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

This review provides an overview of molecular mechanisms of intracellular signal transduction involving free radicals. The structure and functions of enzymes that can produce superoxide anion-radical and hydrogen peroxide are considered in detail. The mechanisms of regulation of cell properties with the participation of specialized redox chains formed by a group of proteins interacting through electron transport processes are discussed. Genetically mediated mechanisms of regulation of cellular redox homeostasis are analyzed. Particular attention is paid to the issue concerning quantitative characterization of the network of interactions of oxidizing and reducing agents, which determines the species-specific and individual characteristics of redox homeostasis and the stress response of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. R. Gerschman, D. L. Gilbert, S. W. Nye, et al., Science 119 (3097), 623 (1954).

    Article  ADS  Google Scholar 

  2. B. N. Tarusov, Fundamentals of the Biological Effects of Radioactive Radiation (Medgiz, Moscow, 1954) [in Russian].

    Google Scholar 

  3. N. M. Emanuel’, Tr. Mosk. O-va Ispyt. Prir. 7, 73 (1963).

    Google Scholar 

  4. N. M. Emanuel’, R. E. Kavetskii, B. N. Tarusov, et al., Biophysics of Cancer (Naukova Dumka, Kiev, 1976).

    Google Scholar 

  5. A. Boveris and B. Chance, Biochem. J. 134 (3), 707 (1973).

    Article  Google Scholar 

  6. E. Cadenas, Ann. Rev. Biochem. 58 (1), 79 (1989).

    Article  Google Scholar 

  7. D. Harman, J. Gerontol. 11 (3), 298 (1956).

    Article  Google Scholar 

  8. V. Kh. Khavinson, V. A. Barinov, A. V. Arutyunyan, et al., Free Radical Oxidation and Aging (Nauka, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  9. N. K. Zenkov, P. M. Kozhin, A. V. Chechushkov, et al., Usp. Gerontol. 33 (1), 10 (2020).

    Google Scholar 

  10. A. F. Vanin and R. M. Nalbandyan, Biofizika 10, 167 (1965).

    Google Scholar 

  11. A. F. Vanin, L. A. Blyumenfel’d, A. G. Chetverikov, Biofizika 12 (5), 829 (1967).

    Google Scholar 

  12. L. J. Ignarro, Biosci. Rep. 19 (2), 51 (1999).

    Article  Google Scholar 

  13. H. Sauer, M. Wartenberg, and J. Hescheler, Cell. Physiol. Biochem. 11, 173 (2001).

    Article  Google Scholar 

  14. G. G. Martinovich, Reactive Oxygen Species in the Regulation of Cell Functions and Properties: Phenomena and Mechanisms (Beloruss. Gos. Univ., Minsk, 2021) [in Russian].

    Google Scholar 

  15. U. Forstermann and W. C. Sessa, Eur. Heart J. 33 (7), 829 (2012).

    Article  Google Scholar 

  16. H. Sies and D. P. Jones, Nat. Rev. Mol. Cell Biol. 21 (3), 1 (2020).

    Article  Google Scholar 

  17. J. D. Lambeth, Nat. Rev. Immunol. 4, 181 (2004).

    Article  Google Scholar 

  18. K. Bedard and H. Krause, Physiol. Rev. 87, 245 (2007).

    Article  Google Scholar 

  19. D. Robertson, R. Farid, C. Moser, et al., Nature 368, 425 (1994).

    Article  ADS  Google Scholar 

  20. A. R. Cross and A. W. Segal, Biochim. Biophys. Acta 1657, 1 (2004).

    Article  Google Scholar 

  21. J. D. Lambeth, G. Cheng, R. S. Arnold, et al., Trends Biochem. Sci. 25, 459 (2000).

    Article  Google Scholar 

  22. K. Rokutan, T. Kawahara, Y. Kuwano, et al., Semin. Immunopathol. 30, 315 (2008).

    Article  Google Scholar 

  23. N. K. Lee, Y. G. Choi, J. Y. Baik, et al., Blood 106, 852 (2005).

    Article  Google Scholar 

  24. S. Sorce and H. Krause, Antioxid. Redox Signaling 11, 2481 (2009).

    Article  Google Scholar 

  25. I. Helmcke, S. Heumuller, R. Tikkanen, et al., Antioxid. Redox Signaling 11, 1279 (2008).

    Article  Google Scholar 

  26. K. Rokutan, T. Kawahara, Y. Kuwano, et al., Antioxid. Redox Signaling 8, 1573 (2006).

    Article  Google Scholar 

  27. C. Cheret, A. Gervais, A. Lelli, et al., J. Neurosci. 28, 12039 (2008).

    Article  Google Scholar 

  28. D. Vara, R. K. Mailer, A. Tarafdar, et al., Arterioscler., Thromb., Vasc. Biol. 41, 683 (2021).

    Article  Google Scholar 

  29. B. Lassegue, D. Sorescu, K. Szocs, et al., Circ. Res. 88, 888 (2001).

    Article  Google Scholar 

  30. P. N. Seshiah, D. S. Weber, P. Rocic, et al., Circ. Res. 91, 406 (2002).

    Article  Google Scholar 

  31. D. I. Brown and K. K. Griendling, Free Radic. Biol. Med. 47, 1239 (2009).

    Article  Google Scholar 

  32. M. Ushio-Fukai, Sci. STKE 2006, re8 (2006).

    Article  Google Scholar 

  33. M. V. Tejada-Simon, F. Serrano, L. E. Villasana, et al., Mol. Cell Neurosci. 29, 97 (2005).

    Article  Google Scholar 

  34. R. Dworakowski, S. P. Alom-Ruiz, and A. M. Shah, Pharmacol. Rep. 60, 21 (2008).

    Google Scholar 

  35. M. Ushio-Fukai, Antioxid. Redox Signaling 9, 731 (2007).

    Article  Google Scholar 

  36. O. Jung, J. G. Schreiber, H. Geiger, et al., Circulation 109, 1795 (2004).

    Article  Google Scholar 

  37. B. Banfi, B. Malgrange, J. Knisz, et al., J. Biol. Chem. 279, 46065 (2004).

    Article  Google Scholar 

  38. W. J. Clerici, K. Hensley, D. L. DiMartino, et al., Heart Res. 98, 116 (1996).

    Article  Google Scholar 

  39. T. Ago, T. Kitazono, H. Ooboshi, et al., Circulation 109, 227 (2004).

    Article  Google Scholar 

  40. I. Cucoranu, R. Clempus, A. Dikalova, et al. Circ. Res. 97, 900 (2005).

    Article  Google Scholar 

  41. W. Chamulitrat, W. Stremmel, T. Kawahara, et al., J. Invest. Dermatol. 122, 1000 (2004).

    Article  Google Scholar 

  42. S. Yang, P. Madyastha, S. Bingel, et al., J. Biol. Chem. 276, 5452 (2001).

    Article  Google Scholar 

  43. P. Vallet, Y. Charnay, K. Steger, et al., Neuroscience 132, 233 (2005).

    Article  Google Scholar 

  44. I. Carmona-Cuenca, B. Herrera, J. J. Ventura, et al., J. Cell Physiol. 207, 322 (2006).

    Article  Google Scholar 

  45. M. Geiszt, J. B. Kopp, P. Varnai, et al., Proc. Natl. Acad. Sci. U. S. A. 97, 8010 (2000).

    Article  ADS  Google Scholar 

  46. L. L. Hilenski, R. E. Clempus, M. Quinn, et al., Arterioscler., Thromb., Vasc. Biol. 24, 677 (2004).

    Article  Google Scholar 

  47. J. Kuroda, K. Nakagawa, T. Yamasaki, et al., Genes Cells 10, 1139 (2005).

    Article  Google Scholar 

  48. J. Kuroda, T. Ago, S. Matsushima et al., Proc. Natl. Acad. Sci. U. S. A. 107, 15565 (2010).

    Article  ADS  Google Scholar 

  49. Y. Maejima, J. Kuroda, S. Matsushima, et al., J. Mol. Cell. Cardiol. 50, 408 (2011).

    Article  Google Scholar 

  50. G. Cheng, Z. Cao, X. Xu, et al., Gene 269, 131 (2001).

    Article  Google Scholar 

  51. D. B. Jay, C. A. Papaharalambus, B. Seidel-Rogol, et al., Free Radical Biol. Med. 45, 329 (2008).

    Article  Google Scholar 

  52. R. S. BelAiba, T. Djordjevic, A. Petry, et al., Free Radical Biol. Med. 42, 446 (2007).

    Article  Google Scholar 

  53. S. S. Brar, Z. Corbin, T. P. Kennedy, et al., Am. J. Physiol. 285, C353 (2003).

    Article  Google Scholar 

  54. A. S. Kamiguti, L. Serrander, K. Lin, et al., J. Immunol. 175, 8424 (2005).

    Article  Google Scholar 

  55. J. Si, J. Behar, J. Wands, et al., Am. J. Physiol.: Gastrointest. Liver Physiol. 294, G174 (2008).

    Google Scholar 

  56. C. Dupuy, R. Ohayon, A. Valent, et al., J. Biol. Chem. 274, 37265 (1999).

    Article  Google Scholar 

  57. R. Forteza, M. Salathe, F. Miot, et al., Am. J. Respir. Cell Mol. Biol. 32, 462 (2005).

    Article  Google Scholar 

  58. D. Wang, X. De Deken, M. Milenkovic, et al., J. Biol. Chem. 280, 3096 (2005).

    Article  Google Scholar 

  59. F. Gu, A. Krüger, H. Roggenkamp, et al., Sci. Signaling 14 (709), eabe3800 (2021).

  60. K. Fiedorczuk, J. A. Letts, G. Degliesposti, et al., Nature 538 (7625), 406 (2016).

    Article  ADS  Google Scholar 

  61. C. C. Page, C. C. Moser, X. Chen, et al., Nature 402 (6757), 47 (1999).

    Article  ADS  Google Scholar 

  62. F. Scialo, D. J. Fernandez-Ayala, and A. Sanz, Front. Physiol. 8, 428 (2017).

    Article  Google Scholar 

  63. A. A. Starkov, Ann. N. Y. Acad. Sci. 1147, 37 (2008).

    Article  ADS  Google Scholar 

  64. S. S. Korshunov, V. P. Skulachev, and A. A. Starkov, FEBS Lett. 416, 15 (1997).

    Article  Google Scholar 

  65. S. T. Ohnishi, T. Ohnishi, S. Muranaka, et al., J. Bioenerg. Biomembr. 37, 1 (2005).

    Article  Google Scholar 

  66. L. A. Sazanov and P. Hinchliffe, Science 311 (5766), 1430 (2006).

    Article  ADS  Google Scholar 

  67. L. A. Sazanov, J. Bioenerg. Biomembr. 46, 247 (2014).

    Article  Google Scholar 

  68. V. Massey, J. Biol. Chem. 269, 22459 (1994).

    Article  Google Scholar 

  69. A. Galkin and U. Brandt, J. Biol. Chem. 280, 30129 (2005).

    Article  Google Scholar 

  70. S. Raha and B. Robinson, Trends Biochem. Sci. 25, 502 (2000).

    Article  Google Scholar 

  71. S. Drose and U. Brandt, J. Biol. Chem. 283, 21649 (2008).

    Article  Google Scholar 

  72. A. Boveris and E. Cadenas, IUBMB Life 50, 1 (2000).

    Article  Google Scholar 

  73. E. Cadenas, Mol. Aspects Med. 25, 17 (2004).

    Article  Google Scholar 

  74. A. Y. Andreyev, Y. E. Kushnareva, and A. A. Starkov, Biochemistry (Moscow) 70, 200 (2005).

    Article  Google Scholar 

  75. L. A. Sena and N. S. Chandel, Mol. Cell. 48, 158 (2012).

    Article  Google Scholar 

  76. G. S. Shadel and T. L. Horvath, Cell 163 (3), 560 (2015).

    Article  Google Scholar 

  77. A. V. Kudryavtseva, G. S. Krasnov, A. A. Dmitriev, et al., Oncotarget 7 (29), 44879 (2016).

    Article  Google Scholar 

  78. J. McCord and I. Fridivich, J. Biol. Chem. 244 (60), 6049 (1969).

    Article  Google Scholar 

  79. R. H. Holm, P. Kennepohl, and E. I. Solomon, Chem. Rev. 96, 2239 (1996).

    Article  Google Scholar 

  80. J. Slot, H. J. Geuze, B. A. Freeman, et al., Lab. Invest. 55, 363 (1986).

    Google Scholar 

  81. K. A. Hopkin, M. A. Papazian, and H. M. Steinman, J. Biol. Chem. 267, 24253 (1992).

    Article  Google Scholar 

  82. H. D. Youn, E. J. Kim, J. H. Roe, et al., Biochemistry 318, 889 (1996).

    Article  Google Scholar 

  83. A. Houldsworth, A. Hodgkinson, S. Shaw, et al., Gene 569, 41 (2015).

    Article  Google Scholar 

  84. S. Govatati, S. Malempati, B. Saradamma, et al., Tumor Biol. 37, 10357 (2016).

    Article  Google Scholar 

  85. I. Batinic-Haberle, A. Tovmasyan, E. R. Roberts, et al., Antioxid. Redox Signaling 20, 2372 (2014).

    Article  Google Scholar 

  86. C. A. Massaad, T. M. Washington, R. G. Pautler, et al., Proc. Natl. Acad. Sci. U. S. A. 106, 13576 (2009).

    Article  ADS  Google Scholar 

  87. K. Baumgart, V. Simkova, F. Wagner, et al., Intensive Care Med. 35, 344 (2009).

    Article  Google Scholar 

  88. G. G. Martinovich, I. V. Martinovich, and S. N. Cherenkevich, Biophysics 56, 444 (2011).

    Article  Google Scholar 

  89. D. P. Jones and H. Sies, Antioxid. Redox Signaling 23 (9), 734 (2015).

    Article  Google Scholar 

  90. M. Reth, Nat. Immunol. 3, 1129 (2002).

    Article  Google Scholar 

  91. M. A. Wouters, S. W. Fan, and N. L. Haworth, Antioxid. Redox Signaling 12 (1), 53 (2010).

    Article  Google Scholar 

  92. L. S. Terada, J. Cell Biol. 174 (5), 615 (2006).

    Article  Google Scholar 

  93. J. Lopez-Barneo, J. R. Lopez-Lopez, J. Urena, et al., Science 241 (4865), 580 (1988).

    Article  ADS  Google Scholar 

  94. E. Cutz, J. Pan, H. Yeger, et al., Semin. Cell Dev. Biol. 24 (1), 40 (2013).

    Article  Google Scholar 

  95. V. P. Skulachev, Biokhimiya 66, 7 (2001).

    Google Scholar 

  96. L. Gao, P. Gonzalez-Rodriguez, P. Ortega-Saenz, et al., Redox Biol. 12, 908 (2017).

    Article  Google Scholar 

  97. M. C. Fernandez-Aguera, L. Gao, P. Gonzalez-Rodriguez, et al., Cell Metab. 22, 825 (2015).

    Article  Google Scholar 

  98. A. Platero-Luengo, S. Gonzalez-Granero, R. Duran, et al., Cell 156, 291 (2014).

    Article  Google Scholar 

  99. X. W. Fu, D. Wang, C. A. Nurse, et al., Proc. Natl. Acad. Sci. U. S. A. 97 (8), 4374 (2000).

    Article  ADS  Google Scholar 

  100. J. Buttigieg, J. Pan, H. Yeger, et al., Am. J. Physiol.: Lung Cell. Mol. Physiol. 303 (7), L598 (2012).

    Google Scholar 

  101. D. Wang, C. Youngson, V. Wong, et al., Proc. Natl. Acad. Sci. U. S. A. 93 (23), 13182 (1996).

    Article  ADS  Google Scholar 

  102. P. Kazemian, R. Stephenson, H. Yeger, et al., Respir. Physiol. 126, 89 (2001).

    Article  Google Scholar 

  103. R. M. Touyz, X. Chen, F. Tabet, et al., Circ. Res. 90, 1205 (2002).

    Article  Google Scholar 

  104. A. M. Hashad, M. Sancho, S. E. Brett, et al., Sci. Rep. 8, 3445 (2018).

    Article  ADS  Google Scholar 

  105. O. F. Harraz, R. R. Abd El-Rahman, K. Bigdely-Shamloo, et al., Circ. Res. 115, 650 (2014).

    Article  Google Scholar 

  106. H. I. Krieger-Brauer, and H. Kather, J. Clin. Invest. 89, 1006 (1992).

    Article  Google Scholar 

  107. K. Mahadev, H. Motoshima, X. Wu, et al., Mol. Cell. Biol. 24 (5), 1844 (2004).

    Article  Google Scholar 

  108. X. Wu and K. J. Williams, Arterioscler., Thromb., Vasc. Biol. 32, 1236 (2012).

    Article  Google Scholar 

  109. B. L. Seely, P. A. Staubs, D. R. Reichart, et al., Diabetes 45 (10), 1379 (1996).

    Article  Google Scholar 

  110. G. G. Martinovich, I. V. Martinovich, and S. N. Cherenkevich, Bull. Exp. Biol. Med. 147 (4), 469 (2009).

    Article  Google Scholar 

  111. G. G. Martinovich, E. N. Golubeva, I. V. Martinovich, et al., J. Biophys. 2012, 921653 (2012).

    Article  Google Scholar 

  112. G. G. Martinovich, I. V. Martinovich, A. V. Vcherashnyaya, et al., Dokl. Nats. Akad. Nauk Belarusi 60 (5), 96 (2016).

    Google Scholar 

  113. G. G. Martinovich, I. V. Martinovich, A. V. Vcherashnyaya, et al., Biophysics 61, 963 (2016).

    Article  Google Scholar 

  114. A. V. Vcherashniaya, I. V. Martinovich, G. G. Martinovich, et al., J. Appl. Spectrosc. 87 (3), 515 (2020).

    Article  ADS  Google Scholar 

  115. G. G. Martinovich, I. V. Martinovich, A. V. Vcherashnyaya, et al., Biophysics 62, 942 (2017).

    Article  Google Scholar 

  116. D. P. Jones, Am. J. Physiol.: Cell Physiol. 295, C849 (2008).

    Article  Google Scholar 

  117. H. Sies, C. Berndt, and D. P. Jones, Annu. Rev. Biochem. 86 (25), 715 (2017).

    Article  Google Scholar 

  118. G. G. Martinovich, S. N. Cherenkevich, Redox Processes in Cells (Beloruss. Gos. Univ., Minsk, 2008) [in Russian].

    Google Scholar 

  119. M. Narasimhan and N. S. Rajasekaran, Biochim. Biophys. Acta, Mol. Basis Dis. 1852, 53 (2015).

    Article  Google Scholar 

  120. Z. Huang, C. Chen, Z. Zeng, et al., FASEB J. 15, 19 (2001).

    Article  Google Scholar 

  121. Y. Lee, H. G. Kim, H. I. Jung, et al., Mol. Cells 14, 305 (2002).

    Google Scholar 

  122. G. G. Martinovich, I. V. Martinovich, E. N. Golubeva, et al., Izv. Nats. Akad. Nauk Belarusi, No. 2, 85 (2012).

    Google Scholar 

  123. S. Kannan, V. R. Muthusamy, K. J. Whitehead, et al., Cardiovasc. Res. 100, 63 (2013).

    Article  Google Scholar 

  124. D. E. Handy and J. Loscalzo, Free Radical Biol. Med. 109, 114 (2017).

    Article  Google Scholar 

  125. X. G. Lei, J. H. Zhu, W. H. Cheng, et al., Physiol. Rev. 96, 307 (2016).

    Article  Google Scholar 

  126. J. P. McClung, C. A. Roneker, W. Mu, et al., Proc. Natl. Acad. Sci. U. S. A. 101, 8852 (2004).

    Article  ADS  Google Scholar 

  127. J. D. Watson, Lancet 383 (9919), 841 (2014).

    Article  Google Scholar 

  128. D. E. Warburton, C. W. Nicol, and S. S. Bredin, Can. Med. Assoc. J. 174, 801 (2006).

    Article  Google Scholar 

  129. M. Ristow, K. Zarse, A. Oberbach, et al., Proc. Natl. Acad. Sci. U. S. A. 106, 8665 (2009).

    Article  ADS  Google Scholar 

  130. G. G. Martinovich and S. N. Cherenkevich, Usp. Fiziol. Nauk 39 (3), 29 (2008).

    Google Scholar 

  131. A. V. Ulasov, A. A. Rosenkranz, G. P. Georgiev, et al., Life Sci. 291, 120111 (2021).

    Article  Google Scholar 

  132. P. Canning, F. J. Sorrell, and A. N. Bullock, Free Radical Biol. Med. 88, 101 (2015).

    Article  Google Scholar 

  133. M. Kobayashi, L. Li, N. Iwamoto, et al., Mol. Cell. Biol. 29, 493 (2009).

    Article  Google Scholar 

  134. D. D. Zhang and M. Hannink, Mol. Cell. Biol. 23, 8137 (2003).

    Article  Google Scholar 

  135. J. Zhu, H. Wang, F. Chen, et al., Free Radical Biol. Med. 99, 544 (2016).

    Article  Google Scholar 

  136. N. K. Zenkov, A. V. Chechushkov, P. M. Kozhin, et al., Biochemistry (Moscow) 82, 556 (2017).

    Article  Google Scholar 

  137. M. C. Lu, J. A. Ji, Z. Y. Jiang, et al., Med. Res. Rev. 36, 924 (2016).

    Article  Google Scholar 

  138. M. C. Egbujor, M. Petrosino, K. Zuhra, et al., Antioxidants 11 (7), 1255 (2022).

    Article  Google Scholar 

  139. S. Qin and D. X. Hou, Engineering 3 (5), 738 (2017).

    Article  Google Scholar 

  140. G. G. Martinovich, I. V. Martinovich, A. V. Vcherashnyaya, et al., Biophysics 65, 920 (2020).

    Article  Google Scholar 

  141. X. J. Wang, J. D. Hayes, L. G. Higgins, et al., Chem. Biol. 17 (1), 75 (2010).

    Article  Google Scholar 

  142. A. T. Dinkova-Kostova, J. W. Fahey, and P. Talalay, Methods Enzymol. 382, 423 (2004).

    Article  Google Scholar 

  143. F. Hong, K. R. Sekhar, M. L. Freeman, et al., J. Biol. Chem. 280, 31768 (2005).

    Article  Google Scholar 

  144. F. Hong, M. L. Freeman, and D. C. Liebler, Chem. Res. Toxicol. 18, 1917 (2005).

    Article  Google Scholar 

  145. S. Fourquet, R. Guerois, D. Biard, et al., J. Biol. Chem. 285, 8463 (2010).

    Article  Google Scholar 

  146. T. Suzuki, A. Muramatsu, R. Saito, et al., Cell Rep. 28, 746 (2019).

    Article  Google Scholar 

  147. R. Venugopal and A. K. Jaiswal, J. Clin. Invest. 93, 14960 (1996).

    Google Scholar 

  148. J. D. Hayes and A. T. Dinkova-Kostova, Trends Biochem. Sci. 39 (4), 199 (2014).

    Article  Google Scholar 

  149. Y. Mitsuishi, K. Taguchi, Y. Kawatani, et al., Cancer Cell 22, 66 (2012).

    Article  Google Scholar 

  150. E. Sun, H. Erb, and T. H. Murphy, Biochem. Biophys. Res. Commun. 326, 371 (2005).

    Article  Google Scholar 

  151. S. Kovac, P. R. Angelova, K. M. Holmstrom, et al., Biochim. Biophys. Acta 1850, 794 (2015).

    Article  Google Scholar 

  152. S. N. Zucker, E. E. Fink, A. Bagati, et al., Mol. Cell 53, 916 (2014).

    Article  Google Scholar 

  153. S. Mannava, D. Zhuang, J. R. Nair, et al., Blood 119, 1450 (2012).

    Article  Google Scholar 

  154. M. Ying, J. Tilghman, Y. Wei, et al., J. Biol. Chem. 289, 32742 (2014).

    Article  Google Scholar 

  155. F. A. Simmen, Y. Su, R. **ao, et al., Reprod. Biol. Endocrinol. 6, 41 (2008).

    Article  Google Scholar 

  156. R. M. Bonett, F. Hu, P. Bagamasbad, et al., Endocrinology 150, 1757 (2009).

    Article  Google Scholar 

  157. H. Imataka, K. Sogawa, K. Yasumoto, et al. EMBO J. 11, 3663 (1992).

    Article  Google Scholar 

  158. Q. Yan, B. He, G. Hao et al., Life Sci. 233, 116641 (2019).

    Article  Google Scholar 

  159. E. E. Fink, S. Moparthy, A. Bagati, et al., Cell Rep. 25, 212 (2018).

    Article  Google Scholar 

  160. B. Chhunchha, E. Kubo, and D. P. Singh, Cells 8 (10), 1159 (2019).

    Article  Google Scholar 

  161. B. Chhunchha, E. Kubo, and D. P. Singh, Cells 11 (8), 1266 (2022).

    Article  Google Scholar 

  162. C. S. Pillay, J. H. Hofmeyr, L. N. Mashamaite, et al., Antioxid. Redox Signaling 18, 2075 (2013).

    Article  Google Scholar 

  163. F. Q. Schafer and G. R. Buettner, Free Radical Biol. Med. 30, 1191 (2001).

    Article  Google Scholar 

  164. J. T. Hancock, R. Desikan, S. J. Neill, et al., J. Theor. Biol. 226, 65 (2004).

    Article  ADS  Google Scholar 

  165. G. G. Martinovich and S. N. Cherenkevich, Vestn. Belorus. Gos. Univ. No. 1, 28 (2004).

    Google Scholar 

  166. G. G. Martinovich, S. N. Cherenkevich, and H. Sauer, Eur. Biophys. J. 34 (7), 937 (2005).

    Article  Google Scholar 

  167. G. G. Martinovich, I. V. Martinovich, and S. N. Cherenkevich, Biofizika 53 (4), 618 (2008).

    Google Scholar 

  168. Y. M. Go, J. J. Gipp, R. T. Mulcahy, et al., J. Biol. Chem. 279, 5837 (2004).

    Article  Google Scholar 

  169. M. Kemp, Y. M. Go, and D. P. Jones, Free Radical Biol. Med. 44, 921 (2008).

    Article  Google Scholar 

  170. L. Flohe, Biochim. Biophys. Acta, Gen. Subj. 1830 (5), 3139 (2013).

    Article  Google Scholar 

  171. G. G. Martinovich, I. V. Martinovich, S. N. Cherenkevich, et al., Cell Biochem. Biophys. 58 (2), 75 (2010).

    Article  Google Scholar 

  172. D. P. Jones, Y. M. Go, C. L. Anderson, et al., FASEB J. 18 (11), 1246 (2004).

    Article  Google Scholar 

  173. G. G. Martinovich and S. N. Cherenkevich, Vestn. Beloruss. Gos. Univ., No. 3, 1 (2004).

  174. G. G. Martinovich, I. V. Martinovich, E. B. Men’shchikova, et al., Dokl. Nats. Akad. Nauk Belarusi 59 (3), 82 (2015).

    Google Scholar 

  175. S. Clement, J. M. Campbell, W. Deng, et al., Adv. Sci. 7 (24), 2003584 (2020).

    Article  Google Scholar 

  176. M. Elas, K. Ichikawa, and H. J. Halpern, Radiat. Res. 177 (4), 514 (2012).

    Article  ADS  Google Scholar 

  177. G. Bacic, A. Pavicevic, and F. Peyrot, Redox Biol. 8, 226 (2016).

    Article  Google Scholar 

  178. A. Adhikari, S. Mondal, M. Das, et al., ACS Biomater. Sci. Eng. 7 (6), 2475 (2021).

    Article  Google Scholar 

  179. S. Mondal, A. Adhikari, R. Ghosh, et al., MRS Adv. 6 (16), 427 (2021).

    Article  Google Scholar 

  180. J. Meng, Z. Lv, Y. Zhang, et al., Antioxid. Redox Signaling 34 (14), 1069 (2021).

    Article  Google Scholar 

Download references

Funding

This work was carried out with partial financial support from the Foundation for Basic Research of the Republic of Belarus (project no. B22-045) and the joint grant from the Russian Science Foundation and the Foundation for Basic Research of the Republic of Belarus (nos. 23-45-10026 and B23RSF-093, respectively). The mechanisms regulating the functioning of NADPH oxidase were described with support from the Russian Science Foundation project no. 23-45-10026, which includes investigation of its activation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Martinovich.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this article declare that they have no conflicts of interest.

Additional information

Translated by D. Timchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: ROS, reactive oxygen species; NADPH, nicotinamide adenine dinucleotide phosphate; Nox, NADPH oxidase; FAD, flavin adenine dinucleotide; FMN, flavin mononucleotide; NADH, nicotinamide adenine dinucleotide; SOD, superoxide dismutase; ARE, antioxidant respons(iv)e element; Duox, Dual oxidase; Nrf2, NF-E2-related factor 2; Keap1, Kelch-like ECH-associated protein 1; Klf9, Kruppel-like factor 9; Prx6, peroxiredoxin 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinovich, G.G., Martinovich, I.V., Voinarouski, V.V. et al. Free Radicals and Signal Transduction in Cells. BIOPHYSICS 68, 537–551 (2023). https://doi.org/10.1134/S0006350923040127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350923040127

Keywords:

Navigation