Log in

Radiomitigation Properties of α-Lipoic Acid when Used alone and in Combination with Metformin or Ethylmethylhydroxypyridine Succinate (Mexidol) in Mice after Exposure to X-ray Radiation

  • BIOPHYSICS OF COMPLEX SYSTEMS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The radiomitigatory properties of α-lipoic acid and its use in combination with metformin and mexidol (ethylmethylhydroxypyridine succinate) in acute X-ray irradiation of animals have been studied. The study of radiation damage to the DNA of polychromatophilic erythrocytes of the red bone marrow of mice using a micronuclear test showed that α-lipoic acid had genoprotective and radiomitigatory properties in vivo. A study of the 30-day survival rate of mice exposed to a lethal dose confirmed that α-lipoic acid have radiomitigatory properties. The radiomitigatory effect of α-lipoic acid was concentration-dependent, and low doses of the drug were most effective. The radiomitigatory properties of α-lipoic acid were reduced in combination with mexidol and metformin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. S. V. Gudkov, N. R. Popova, and V. I. Bruskov, Biophysics 60, 659 (2015).

    Article  Google Scholar 

  2. E. Obrador, R. Salvador, J. I. Villaescusa, et al., Biomedicines 8, 461 (2020).

    Article  Google Scholar 

  3. M. Srinivasan, N. Devipriya, K. B. Kalpana, and V. Menon, Toxicology 262, 43 (2009).

    Article  Google Scholar 

  4. M. Cheki, A. Shirazi, A. Mahmoudzadeh, et al., Mutat. Res.: Genet. Toxicol. Environ. Mutagen. 809, 24 (2016).

    Article  Google Scholar 

  5. V. I. Bruskov, A. V. Chernikov, V. E. Ivanov, et al., Phys. Wave Phenom. 28 (2), 91 (2020).

    Article  Google Scholar 

  6. V. I. Bruskov, E. E. Karmanova, A. V. Chernikov, et al., Phys. Wave Phenom. 29 (2), 94 (2021).

    Article  ADS  Google Scholar 

  7. K. P. Shay, R. F. Moreau, E. J. Smith, et al., Biochim. Biophys. Acta 1790 (10), 1149 (2009).

    Article  Google Scholar 

  8. U. Cakatay, Med. Hypotheses 66 (1), 110 (2006).

    Article  Google Scholar 

  9. C. Waslo, D. Bourdette, N. Gray, et al., Curr. Treat. Options Neurol. 21 (6), 26 (2019).

    Article  Google Scholar 

  10. L. Yu. Morgunov, Med. Sovet 17, 90 (2014).

    Google Scholar 

  11. O. V. Kurushina, A. E. Barulin, E. P. Chernovolenko, Med. Sov. 1, 58 (2019).

    Article  Google Scholar 

  12. S. Yu. Kalinchenko, L. O. Vorslov, I. A. Tyuzikov, et al., Farmateka 6 (279), 43 (2014).

    Google Scholar 

  13. Y. Wang, N. Everaert, Z. Song, et al., Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 211, 34 (2017).

    Article  Google Scholar 

  14. L. Zhou and Y. Cheng, Neuropharmacology 155, 98 (2019).

    Article  Google Scholar 

  15. S. Salinthone, V. Yadav, R. V. Schillace, et al., PLoS One 5 (9), e13058 (2010).

    Article  ADS  Google Scholar 

  16. J. K. Lee, D. Samanta, H. G. Nam, and R. N. Zare, J. Am. Chem. Soc. 141 (27), 10585 (2019).

    Article  Google Scholar 

  17. Y. Koriyama, Y. Nakayama, S. Matsugo, and S. Kato, Brain Res. 1499, 145 (2013).

    Article  Google Scholar 

  18. S. Saboori, E. Falahi, E. Eslampour, et al., Nutr., Metab. Cardiovasc. Dis. 28(8), 779 (2018).

    Article  Google Scholar 

  19. M. Rahimlou, M. Asadi, N. B. Jahromi, and A. Mansoori, Clin. Nutr. ESPEN 32, 16 (2019).

    Article  Google Scholar 

  20. S. L. Brown, A. Kolozsvary, J. Liu, et al., Radiat. Res. 173 (4), 462 (2010).

    Article  ADS  Google Scholar 

  21. L. Ramachandran, C. Krishnan, and K. Nair, Mutat. Res. Genet. Toxicol. Environ. Mutagen. 724, 52 (2011).

    Article  Google Scholar 

  22. S. H. Ryu, E. Y. Park, S. Kwak, et al., Oncotarget 7 (13), 15554 (2016).

    Article  Google Scholar 

  23. R. S. Said, A. Mohamed and D. H. Kassem, Toxicology 442, 152536 (2020).

    Article  Google Scholar 

  24. E. E. Karmanova, A. V. Chernikov, A. M. Usacheva, V. I. Bruskov, Khim.-Farm. Zh. 56 (3), 3 (2022).

    Google Scholar 

  25. T. A. Voronina, Ross. Med. Zh. 24 (7), 434 (2016).

    Google Scholar 

  26. L. A. Balykova, A. V. Siprov, V. I. Inchina, et al., Vestn. Biomed. Sotsiol. 6 (3), 4 (2021).

    Google Scholar 

  27. M. Ostrovskyi, ScienceRise: Med. Sci. 3 (42), 20 (2021).

    Google Scholar 

  28. A. N. Grebenyuk, V. A. Basharin, R. A. Tarumov, et al., Vestn. Ross. Voen.-Med. Akad. 1 (41), 102 (2013).

    Google Scholar 

  29. K. Mortezaee, D. Shabeeb, A. E. Musa, et al., Curr. Clin. Pharmacol. 14 (1), 41 (2019).

    Article  Google Scholar 

  30. V. Piskovatska, K. B. Storey, A. M. Vaiserman, and O. Lushchak, in Reviews on New Drug Targets in Age-Related Disorders. Advances in Experimental Medicine and Biology, Ed. by P. Guest (Springer-Verlag, Cham, 2020), Vol. 1260, pp. 319–332.

    Google Scholar 

  31. E. E. Karmanova, S. A. Abdullaev, V. E. Ivanov, et al., IOP Conf. Ser.: Mater. Sci. Eng. 487, 012023 (2019).

  32. E. E. Karmanova, A. V. Chernikov, A. M. Usacheva, and V. I. Bruskov, Khim.-Farm. Zh. 54 (7), 10 (2020).

    Google Scholar 

  33. A. Vral, M. Fenech, and H. Thierens, Mutagenesis 26 (1), 11 (2011).

    Article  Google Scholar 

  34. N. R. Asadullina, A. M. Usacheva, V. S. Smirnova and S. V. Gudkov, Nucleosides, Nucleotides Nucleic Acids 29, 786 (2010).

    Article  Google Scholar 

  35. A. Piechota-Polanczyk, M. Zielińska, D. Piekielny, and J. Fichna, Biomed. Pharmacother. 84, 470 (2016).

    Article  Google Scholar 

  36. A. M. Usacheva, A. V. Chernikov, E. E. Karmanova, and V. I. Bruskov, Khim.-Farm. Zh. 55 (11), 9 (2021). A

    Google Scholar 

  37. N. S. Chandel, BMC Biol. 12, 34 (2014).

    Article  Google Scholar 

  38. D. C. Henstridge, M. Whitham, and M. A. Febbraio, Mol. Metabol. 3, 781 (2014).

    Article  Google Scholar 

  39. I. N. Todorov, Ros. Khimich. Zhurn., 51, 93 (2007).

    Google Scholar 

  40. L. Rochette, G. Steliana, R. Carole, et al., Mol. Nutr. Food Res. 57, 114 (2013).

    Article  Google Scholar 

  41. S. Dragomanova, S. Miteva, F. Nicoletti, et al., Antioxidants 10, 1294 (2021).

    Article  Google Scholar 

  42. M. R. Owen, E. Doran, and A. P. Halestrap, Biochem. J. 348, 607 (2000).

    Article  Google Scholar 

  43. M.-Y. El-Mir, V. Nogueira, E. Fontaine, et al., J. Biol. Chem. 275, 223 (2000).

    Article  Google Scholar 

  44. G. V. Buznik, V. V. Vostrikov, and P. D. Shabanov, Vestn. Smolensk. Gos. Med. Akad. 19 (4), 22 (2020).

    Google Scholar 

  45. N. A. Zharkinbekova, Meditsina (Almaty) Nos. 3–4, 64 (2020).

    Google Scholar 

  46. R. Yahyapour, P. Amini, H. Saffar, et al., Curr. Drug Res. Rev. 11, 111 (2019).

    Article  Google Scholar 

  47. I. Yu. Torshin, O. A. Gromova, I. S. Sardaryan, et al., Farmakokinet. Farmakodin. No. 4, 19 (2016).

    Google Scholar 

Download references

Funding

The work was carried out within the framework of the ITEB RAS State Task, project no. 075-01027-22-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Karmanova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All procedures with mice were carried out taking into account the international rules for working with laboratory animals and the requirements of the Commission on Biological Safety and Bioethics of the ITEB RAS (Minutes of the meeting of the Commission on Biological Safety and Bioethics of the ITEB RAS No. 25/2021 of February 09, 2021).

CONFLICT OF INTEREST

The authors of this article declare that they have no conflicts of interest.

Additional information

Translated by E. Puchkov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: LA, α-lipoic (thioctic) acid; EMHPS, ethylmethylhydroxypyridine succinate (mexidol); MF, metformin; PCE, polychromatophilic erythrocytes; LD, lethal dose; ALE average life expectancy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmanova, E.E., Chernikov, A.V., Usacheva, A.M. et al. Radiomitigation Properties of α-Lipoic Acid when Used alone and in Combination with Metformin or Ethylmethylhydroxypyridine Succinate (Mexidol) in Mice after Exposure to X-ray Radiation. BIOPHYSICS 68, 618–625 (2023). https://doi.org/10.1134/S0006350923040085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350923040085

Keywords:

Navigation