Log in

Two Subcompartments of the Smooth Endoplasmic Reticulum in Perisynaptic Astrocytic Processes: Ultrastructure and Distribution in Hippocampal and Neocortical Synapses

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—

Perisynaptic astrocytic processes involved in the tripartite synapse functioning respond to its activation by local depolarization with calcium ions release from the intracellular stores inside nodes of astrocytic processes and develop local or generalized calcium events. However, based on the first electron microscopy studies the opinion was formed that terminal astrocytic lamellae are devoid of any organelles, including the main astrocytic calcium store – the cisternae of the smooth endoplasmic reticulum. Indeed, the analysis of smooth endoplasmic reticulum cisternae could be limited by their weak electron contrast, the studying of astrocytic processes on single sections, and insufficient optical resolution of the equipment used. Here, using serial section transmission electron microscopy and 3D reconstructions, we analyzed astrocytic processes in murine hippocampal and cortical synapses. As a result of unit membranes contrast enhancement, it was shown for the first time that perisynaptic processes of astrocytes with a morphology of thin branchlets contained two types of smooth endoplasmic reticulum cisternae and microvesicles. Unlike branchlets, membranous organelles inside terminal lamellae were comprised by only short fragments of thin smooth endoplasmic reticulum cisternae and microvesicles, whose groups tended to be located in close proximity to active zones of the most active synapses. This paper discusses both the reliability of alternative electron microscopy methods while studying astrocytic microenvironment of synapses and structure-function aspects of smooth endoplasmic reticulum cisternae compartmentalization inside the perisynaptic processes of astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. A. Reichenbach, A. Derouiche, and F. Kirchhoff, Brain Res. Rev. 63, 11 (2010).

    Article  Google Scholar 

  2. B. S. Khakh and M. V. Sofroniew, Nat. Neurosci. 18, 942 (2015).

    Article  Google Scholar 

  3. M. Arizono, V. V. G. K. Inavalli, A. Panatier, et al., Nat. Commun. 11, 1906 (2020).

    Article  ADS  Google Scholar 

  4. M. Armbruster, S. Naskar, J. P. Garcia, et al., Nat. Neurosci. 25, 607 (2022).

    Article  Google Scholar 

  5. J. Špaček and A. R. Lieberman, J. Cell Sci. 46, 129 (1980).

    Article  Google Scholar 

  6. J. Špaček and K. M. Harris, J. Neurosci. 17, 190 (1997).

    Article  Google Scholar 

  7. Y. Wu, C. Whiteus, C. S. Xue, et al., Proc. Natl. Acad. Sci. U. S. A. 114, E4859 (2017).

    Google Scholar 

  8. J. Špaček, Anat. Embryol. 171, 235 (1985).

    Article  Google Scholar 

  9. J. Špaček and K. M. Harris, J. Comp. Neurol. 393, 58 (1998).

    Article  Google Scholar 

  10. R. Ventura and K. M. Harris, J. Neurosci. 19, 6897 (1999).

    Article  Google Scholar 

  11. M. A. Xu-Friedman, K. M. Harris, and W. G. Regehr, J. Neurosci. 21, 6666 (2001).

    Article  Google Scholar 

  12. C. Genoud, C. Quairiaux, and P. Steiner, PLoS Biol. 4, e343 (2006).

    Article  Google Scholar 

  13. M. R. Witcher, S. A. Kirov, and K. M. Harris, Glia 55, 13 (2007).

    Article  Google Scholar 

  14. K. Chounlamountry and J.-P. Kessler, Glia 59, 655 (2011).

    Article  Google Scholar 

  15. M. Bellesi, L. de Vivo, G. Tononi, et al., BMC Biol. 13, 66 (2015).

    Article  Google Scholar 

  16. P. Bezzi, V. Gundersen, J. L. Galbete, et al., Nat. Neurosci. 7, 613 (2004).

    Article  Google Scholar 

  17. L. H. Bergersen, C. Morland, L. Ormel, et al., Cereb. Cortex 22, 1690 (2012).

    Article  Google Scholar 

  18. I. Patrushev, N. Gavrilov, V. Turlapov, et al., Cell Calcium 54, 343 (2013).

    Article  Google Scholar 

  19. M. J. Karnovsky, In Proceedings of the 11th Annual Meeting of the American Society for Cell Biology, (1971), Vol. 284, p. 146.

  20. A. M. Seligman, H. L. Wasserkrug, and J. S. Hanker, J. Cell Biol. 30, 424 (1966).

    Article  Google Scholar 

  21. B. Fernandez, I. Suarez, and G. Gonzalez, Anat. Anz. 156, 31 (1984).

    Google Scholar 

  22. A. Semyanov and A. Verkhratsky, Trends Neurosci. 44, 781 (2021).

    Article  Google Scholar 

  23. Y. Oe, O. Baba, H. Ashida, et al., Glia 64, 1532 (2016).

    Article  Google Scholar 

  24. N. Benmeradi, B. Payre, and S. L. Goodman, Microsc. Microanal. 21 (3), 721 (2015).

    Article  ADS  Google Scholar 

  25. T. Hanaichi, T. Sato, T. Iwamoto, et al., J. Electron Microsc. (Tokyo) 35, 304 (1986).

    Google Scholar 

  26. S. Saalfeld, R. Fetter, A. Cardona, et al., Nat. Methods 9, 717 (2012).

    Article  Google Scholar 

  27. J. C. Fiala, K. M. Harris, J. Microsc. 202, Pt 3, 468 (2001).

    Article  MathSciNet  Google Scholar 

  28. J. C. Fiala, J. Microsc. 218 (1), 52 (2005).

    Article  MathSciNet  Google Scholar 

  29. W. C. De Bruijn, J. Ultrastruct. Res. 42, 29 (1973).

    Article  Google Scholar 

  30. L. A. Langford and R. E. Coggeshall, Anat. Rec. 197, 297 (1980).

    Article  Google Scholar 

  31. E. A. Shishkova, I. V. Kraev, and V. V. Rogachevsky, Biophysics 67, 5, 752 (2022).

  32. P. Drochmans, J. Ultrastruct. Res. 6, 141 (1962).

    Article  Google Scholar 

  33. J. P. Revel, J. Histochem. Cytochem. 12, 104 (1964).

    Article  Google Scholar 

  34. L.-E. Thornell, J. Ultrastruct. Res. 49, 157 (1974).

    Article  Google Scholar 

  35. C. Prats, T. E. Graham, and J. Shearer, J. Biol. Chem. 293, 19, 7089 (2018).

  36. K. K. Rybicka, Tissue Cell, 28, 3, 253 (1996).

  37. M. L. Entman, S. S. Keslensky, A. Chu, et al., J. Biol. Chem. 255, 13, 6245 (1980).

  38. Y. Hirata, M. Atsumi, Y. Ohizumi, et al., Biochem. J. 371, 81 (2003).

    Article  Google Scholar 

  39. C. Lavoie, L. Roy, J. Lanoix, et al., Prog. Histochem. Cytochem. 46, 1 (2011).

    Article  Google Scholar 

  40. M. S. Muller, R. Fox, A. Schousboe, et al., Glia 62, 526 (2014).

    Article  Google Scholar 

  41. S. P. J. Brooks, B. J. Lampi, and C. G. Bihun, Contemp. Top. Lab. Anim. Sci. 38, 19 (1999).

    Google Scholar 

  42. C. W. Scouten, R. O’Connor, and M. Cunningham, J. Microsc. Today 14, 3, 26 (2006).

  43. R. Kasukurthi, M. J. Brenner, Amy M. Moore, et al., J. Neurosci. Methods 184, 303 (2009).

    Article  Google Scholar 

  44. S. R. Nelson, D. W. Schulz, J V. Passonneau, et al., J. Neurochem. 15, 1271 (1968).

    Article  Google Scholar 

  45. F. D. Morgenthaler, D. M. Koski, R. Kraftsik, et al., Neurochem. Int. 48, 616 (2006).

    Article  Google Scholar 

  46. L. F. Obel, M. S. Muller, A. B. Walls, et al., Front. Neuroenergetics 4, 3, 1 (2012).

  47. J. S. Coggan, D. Keller, C. Calo, et al., PLoS Comput. Biol. 14, 8, e1006392 (2018).

  48. O. H. Lowry, J. V. Passonneau, F. X. Hasselberger, et al., J. Biol. Chem. 239, 18 (1964).

    Article  Google Scholar 

  49. H. Watanabe and J. V. Passonneau, Brain Res. 66, 147 (1974).

    Article  Google Scholar 

  50. R. A. Swanson, S. M. Sagar, and F. R. Sharp, Neurol. Res. 11, 24 (1989).

    Article  Google Scholar 

  51. R. A. Swanson, M. M. Morton, S. M. Sagar, et al., Neuroscience 51, 2, 451 (1992).

  52. T. Matsui, T. Ishikawa, H. Ito, et al., J. Physiol. 590, 607 (2012).

    Article  Google Scholar 

  53. M. K. Brewer and M. S. Gentry, in Advances in Neurobiology, 23: Brain Glycogen Metabolism (Springer Nat., Cham, 2019), pp. 17–81.

  54. J. Hirrlinger, S. Hulsmann, and F. Kirchhoff, Eur. J. Neurosci. 20, 2235 (2004).

    Article  Google Scholar 

  55. Y. Bernardinelli, J. Randall, E. Janett, et al., Curr. Biol. 24, 1679 (2014).

    Article  Google Scholar 

  56. G. R. Login and A. M. Dvorak, Histochem. J. 20, 373 (1988).

    Article  Google Scholar 

  57. G. R. Login and A. M. Dvorak, The Microwave Tool Book (Beth Israel Hospital, 1994).

  58. F.E. Jensen and K.M. Harris, J. Neurosci. Methods 29, 217 (1989).

    Article  Google Scholar 

  59. M. A. Sullivan, S. T. N. Aroney, S. Li, et al., Biomacromolecules 15, 660 (2014).

    Article  Google Scholar 

  60. T. Satoh, C. A. Ross, A. Villa, et al., J. Cell Biol. 111, 615 (1990).

    Article  Google Scholar 

  61. N. Holbro, A. Grunditz, and T. G. Oertner, Proc. Natl. Acad. Sci. U. S. A. 106, 15055 (2009).

    Article  ADS  Google Scholar 

  62. P. Jedlicka, A. Vlachos, S. W. Schwarzacher, et al., Behav. Brain Res. 192, 12 (2008).

    Article  Google Scholar 

  63. K. Takei, H. Stukenbrok, A. Metcalf, et al., J. Neurosci. 12, 489 (1992).

    Article  Google Scholar 

  64. A. H. Sharp, P. S. McPherson, T. M. Dawson, et al., J. Neurosci. 13, 3051 (1993).

    Article  Google Scholar 

  65. H. Shimizu, M. Fukaya, and M. Yamasaki, Proc. Natl. Acad. Sci. U. S. A. 105, 11998 (2008).

    Article  ADS  Google Scholar 

  66. R. Barzan, F. Pfeiffer, and M. Kukley, Front. Neurosci. 10, 135 (2016).

    Google Scholar 

  67. J.-P. Mothet, L. Pollegioni, G. Ouanounou, et al., Proc. Natl. Acad. Sci. U. S. A. 102, 5606 (2005).

    Article  ADS  Google Scholar 

  68. Y. Du, S. Ferro-Novick, and P. Novick, J. Cell Sci. 117, 2871 (2004).

    Article  Google Scholar 

  69. J. Espadas, D. Pendin, R. Bocanegra, et al., Nat. Commun. 10, 5327 (2019).

    Article  ADS  Google Scholar 

  70. S. Wang, H. Tukachinsky, F. B. Romano, et al., eLife 5, e18605 (2016).

    Article  Google Scholar 

  71. J. D. Lindsey and M. H. Ellisman, J. Neurosci. 5, 12, 3135 (1985).

  72. N. Rismanchi, C. Soderblom, J. Stadler, et al., Hum. Mol. Genet. 17, 11, 1591 (2008).

  73. X. Hu and F. Wu, Prot. Cell, 6, 4, 307 (2015).

  74. M. Krzisch, S. G. Temprana, L. A. Mongiat, et al., Brain Struct. Funct. 220, 4, 2027 (2015).

  75. G. Mattews, Neuron 44, 223 (2004).

    Article  Google Scholar 

  76. R. G. Parton and K. Simons, Nat. Rev. Mol. Cell Biol. 8, 185 (2007).

    Article  Google Scholar 

  77. N. J. Willmott, K. Wong, and A. J. Strong, J. Neurosci. 20, 5, 1767 (2000).

  78. X. Hua, E. B. Malarkey, V. Sunjara, et al., J. Neurosci. Res. 76, 86 (2004).

    Article  Google Scholar 

  79. M. W. Sherwood, M. Arizono, C. Hisatsune, et al., Glia 65, 3, 502 (2017).

  80. E. Shigetomi, S. Patel, and B. S. Khakh, Trends Cell Biol. 26, 4, 300 (2016).

  81. J. Meldolesi and T. Pozzan, J. Cell Biol. 21, 142, 1395 (1998).

  82. Y. Takumi, V. Ramirez-Leon, P. Laake, et al., Nat. Neurosci. 2, 7, 618 (1999).

  83. M. G. Stewart, N. I. Medvedev, V. I. Popov, et al., Eur. J. Neurosci. 21, 3368 (2005).

    Article  Google Scholar 

  84. V. I. Popov, N. I. Medvedev, I. V. Patrushev, et al., Neuroscience 149, 549 (2007).

    Article  Google Scholar 

  85. A. Plata, A. Lebedeva, P. Denisov, et al., Front. Mol. Neurosci. 11, 215 (2018).

    Article  Google Scholar 

  86. A. Matus, Curr. Opin. Neurobiol. 15, 76 (2005).

    Article  Google Scholar 

  87. A. J. G. D. Holtmaat, J. T. Trachtenberg, L. Wilbrecht, et al., Neuron 45, 279 (2005).

    Article  Google Scholar 

  88. A. H. Cornell-Bell, P. G. Thomas, and S. J. Smith, Glia 3, 322 (1990).

    Article  Google Scholar 

  89. M. E. Brown and P. C. Bridgman, J. Neurobiol. 58, 1, 118 (2004).

  90. S. J. Stachelek, R. A. Tuft, and L. M. Lifschitz, J. Biol. Chem. 276, 35652 (2001).

    Article  Google Scholar 

  91. C. Cali, J. Baghabra, D.J. Boges, et al., J. Comp. Neurol. 524, 23 (2016).

    Article  Google Scholar 

  92. M. Bellesi, L. de Vivo, S. Koebe, et al., Front. Cell Neurosci. 12, 308 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed on the equipment of the Shared Core Facilities of the Pushchino Scientific Center for Biological Research (No. 670266, http://www.ckprf.ru/ckp/670266/).

Funding

The study was conducted within the framework of the State Task of the PSC RAS, project no. 075-00957-23-01; with the financial support of the Russian Foundation for Basic Research, project no. 20-34-90068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rogachevsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Experiments on anesthetized and unanesthetized animals were carried out in accordance with the requirements of the European Convention for the Protection of Animals 2010/63/EU. All applicable international, national and institutional principles for the care and use of animals in the performance of work have been observed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishkova, E.A., Rogachevsky, V.V. Two Subcompartments of the Smooth Endoplasmic Reticulum in Perisynaptic Astrocytic Processes: Ultrastructure and Distribution in Hippocampal and Neocortical Synapses. BIOPHYSICS 68, 246–258 (2023). https://doi.org/10.1134/S0006350923020215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350923020215

Keywords:

Navigation