Log in

Hypothesis on Pollution of Neuronal Membranes, Epilepsy and Ketogenic Diet

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Taking into account recent facts, Altrup’s neuron’s membrane pollution hypothesis for epilepsy is dealt with. This hypothesis links paroxysmal depolarization shifts observed during epileptic activity, and single-neuron pacemaker potentials. Membrane’s physicochemical characteristics, fluidity and pollution influence on its capability to conduct impulses and polarize. Previously used means of epilepsy treatment based on the ketogenic diet, as well as their possible mechanisms are discussed on the light of Altrup’s hypothesis. Among possible action mechanisms for ketogenic diet, we underline ketone bodies antiepileptic action, the role of increased synthesis of glutathione and the effect of polyunsaturated fatty acids (PUFA) and cholesterol as components included into the ketogenic diet. These three mechanisms, among others, lead to a regulation of fluidity and other biophysical properties of the membrane bilayer as well as to a cleansing of the membrane from amphiphilic polluters, in accordance with Altrup’s hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. M. Fiest, K. M. Sauro, S. Wiebe, et al., Neurology 88, 296, (2017).

    Google Scholar 

  2. J. H. Bautista and F. Luders, Epileptic Disord. 2 (1), 65 (2000).

    Google Scholar 

  3. J. Walden, H. Straub, and E. J. Speckmann, Acta Neurol. Scand. (Suppl.) 140, 41 (1992).

    Google Scholar 

  4. S. Engelborghs, R. D’Hooge, and P. P. De Deyn, Acta Neurol. Belg. 100, 201 (2000).

    Google Scholar 

  5. H. F. Bradford, Prog. Neurobiol. 47, 477, (1995).

    Google Scholar 

  6. A. Bragin, C. L Wilson, and J. Engel, Jr., Epilepsia 41, 144 (2000).

    Google Scholar 

  7. U. Altrup, M. Hader, J. L. Hernandez Caceres, et al., Brain Res. 1122, 65 (2006).

    Google Scholar 

  8. E. Kandel, Behavioral Biology of Aplysia (New York, 1979).

    Google Scholar 

  9. A. L. Hodgkin and A. F. Huxley, J. Physiol. 117, 500 (1952).

    Article  Google Scholar 

  10. M. Wiemann, W. Wittkowski, U. Altrup, et al., Cell Tissue Res. 286, 43 (1996).

    Google Scholar 

  11. E.-J. Speckmann and H. Caspers, Epilepsia 14, 397 (1973).

    Google Scholar 

  12. M. Segal, J. Neurophysiol. 65, 761 (1991)

    Google Scholar 

  13. E. S. Nikitin, P. M. Balaban, Zh. Vyssh. Nerv. Dyat. im. I. P. Pavlova 61 (6), 750 (2011)

    Google Scholar 

  14. T. P. Norekyan, E. S. Nikitin, N. I. Bravarenko, et al., Zh. v\Vyssh. Nerv. Dyat. im. I. P. Pavlova 51(6), 717 (2001).

    Google Scholar 

  15. U. Altrup, M. Hader, and U. Storz, Brain Res. 975, 73 (2003).

    Google Scholar 

  16. R. H. Kramer and R. S. Zucker. J. Physiol. 362 (1), 107 (1985).

    Google Scholar 

  17. T. Budde, L. Caputi, T. Kanyshkova, et al., J. Neurosci. 25, 9871 (2005).

    Google Scholar 

  18. N. I. Kononenko, Comp. Biochem. Physiol. 107A, 323 (1994).

    Google Scholar 

  19. N. I. Kononenko, in Proc. IMACS Symp. on Mathematical Modelling (Vienna, 1994), pp. 315–318.

  20. A. O. Komendantov and N. I. Kononenko, Syst. Anal. Model. Simul. 18–19, 725 (1995).

  21. N. M. Berezetskaya, V. N. Kharkyanen, and N. I. Kononenko, J. Theor. Biol. 183 (2), 207 (1996).

    ADS  Google Scholar 

  22. N. I. Kononenko. Comp. Biochem. Physiol. 106A, 135 (1993).

    Google Scholar 

  23. R. C. Garcia Reyes, Bachelor’s Thesis in Mathematics (Havana Univ., 2020).

  24. S. V. Stovbun, L. V. Yakovenko, Vestn. Mosk.Gos. Univ., Ser. Fiz., No. 6, 101 (2014).

  25. M. N. Rezaeva, M. Henschel, H.-L. Hernandez, et al., Biofizika 25 (1), 41 (1980).

    Google Scholar 

  26. I. Tasaki, Nerve excitation: A Macromolecular Approach (C. Thomas, Springfield, MA, 1968; Moscow, Mir, 1971).

  27. W. A. Catterall, A. L.Goldin, and S. G. Waxman, Pharmacol. Rev. 57, 397 (2005).

    Google Scholar 

  28. I. Tasaki and K. Iwasa, Japan. J. Physiol. 32 (1), 69 (1982).

    Google Scholar 

  29. V. G. Artyukhov and M. A. Nakvasina, Biological Membranes: Structural Organization, Functions, and Modification by Physicochemical Agents: A Textbook (Voronezh Tate Univ, Voronezh, 2000) [in Russian].

    Google Scholar 

  30. J. R. Godfrey, M. P. Diaz, M. Pincus, et al., Psychoneuroendocrinology 91, 169 (2018).

    Google Scholar 

  31. B. C. Abbott, A. V. Hill, and J. V. Howarth, Proc. Roy. Soc. Lond. B: Biol. Sci. 148 (931), 149 (1958).

    ADS  Google Scholar 

  32. J. F. Howe, J. D. Loeser, and W. H. Calvin, Pain 3 (1), 25 (1977).

    Google Scholar 

  33. N. P. Franks and W. R. Lieb, Nature 333, 662 (1988).

    ADS  Google Scholar 

  34. E. K. Lund, L. J. Harvey, S. Ladha, et al., Ann. Nutr. Metab. 43, 290 (1999).

    Google Scholar 

  35. A. Hollo, Z. Clemens, A. Kamondi, et al., Epilepsy Behav. 24, 131 (2012).

    Google Scholar 

  36. K. Ji-Eun and C. Kyung-Ok, Nutrients 11, 1309 (2019).

    Google Scholar 

  37. A. Sukhotin, N. Fokina, and T. Ruokolainen, J. Exp. Biol. 220, 1423 (2017).

    Google Scholar 

  38. G. Guelpa and A. Marie, Rev. Ther. Medico-Chirurg. 78, 8 (1911).

    Google Scholar 

  39. J. W. Wheless, Epilepsia 49 (8), 3 (2008).

    Google Scholar 

  40. R. M. Wilder, Mayo Clinic Proc. 2, 307 (1921).

    Google Scholar 

  41. Y. Zhang, J. Xu, K. Zhang, et al., Curr. Neuropharmacol. 16, 66 (2018).

    Google Scholar 

  42. D. Boison, Curr. Opin. Neurol. 30, 187 (2017).

    Google Scholar 

  43. A. L. Hartman, X. Zheng, E. Bergbower, et al., Epilepsia 51, 1395 (2010).

    Google Scholar 

  44. D. Y. Kim and J. M. Rho, Curr. Opin. Clin. Nutr. Metab. Care 11, 113 (2008).

    Google Scholar 

  45. A. L. Hartman, M. Gasior, E. P. Vining, et al., Pediatr. Neurol, 36, 281 (2007)

    Google Scholar 

  46. A. Paoli, G. Bosco, E. M. Camporesi, and D. Mangar, Front. Psychol. 6, 27 (2015).

    Google Scholar 

  47. E. A. Kurinnaya and M. A. Barabanova, Zh. Nevrol. Psikhiatrii 10, 67 (2005).

    Google Scholar 

  48. S. Sun, H. Li, J. Chen, et al., Physiology 32, 453 (2017).

    Google Scholar 

  49. C. F. Pereira and C. R. de Oliveira, Neurosci. Res. 37, 227 (2000).

    Google Scholar 

  50. H. M. Keith, Arch. Neurol. Psych. 29, 148 (1933).

    Google Scholar 

  51. K. J. Bough and J. M. Rho, Epilepsia 48, 43 (2007).

    Google Scholar 

  52. H. M. Keith, Am. J. Dis. Children 41 (3) 532 (1931).

    Google Scholar 

  53. S. S. Likhodii, I. Serbanescu, M. A. Cortez, et al., Ann. Neurol. 54 (2), 219 (2003).

    Google Scholar 

  54. K. J. Seymour, S. Bluml, J. Sutherling, et al., Magn. Reson. Mater. Phys. Biol. Med. 8 (1), 33 (1999).

    Google Scholar 

  55. N. Juge, J. A. Gray, H. Omote, et al., Neuron 68 (1), 99 (2010).

    Google Scholar 

  56. L. L. Thio, M. Wong, and K. A. Yamada, Neurology 54 (2), 325 (2000).

    Google Scholar 

  57. M. M. Hasan-Olive, K. H. Lauritzen, M. Ali, et al., Neurochem. Res. 44 (1), 22 (2019).

    Google Scholar 

  58. M. A. Rogawski, W. Loscher, and J. M. Rho, Cold Spring Harbor Perspect. Med. 6 (5), a022780 (2016).

    Google Scholar 

  59. R. L. Veech, B. Chance, Y. Kashiwaya, et al., IUBMB Life 51 (4), 241 (2001).

    Google Scholar 

  60. R. L. Veech, Prostaglandins Leukot. Essent. Fatty Acids 70 (3), 309 (2004).

    Google Scholar 

  61. A. Mosek, H. Natour, M. Y. Neufeld, et al., Seizure 18 (1), 30 (2009).

    Google Scholar 

  62. G. Dyrda, E. Boniewska-Bernacka, D. Man, et al., Mol. Biol. Rep. 46 (3), 3225 (2019).

    Google Scholar 

  63. H. V. Junior, M. M. D. F. Fonteles, and R. M. de Freitas, Oxidative Med. Cell. Longev. 2 (3), 130 (2009).

    Google Scholar 

  64. S. G. Mueller, A. H. Trabesinger, P. Boesiger, et al., Neurology 57 (8), 1422 (2001).

    Google Scholar 

  65. J. B. Schulz, J. Lindenau, J. Seyfried, et al., Eur. J. Biochem. 267 (16), 4904 (2000).

    Google Scholar 

  66. C. A. Shaw, in Glutathione in the Nervous System, Ed. by C. A. Shaw (Taylor & Francis, London, 1998).

    Google Scholar 

  67. T. Harayama and T. Shimizu, J. Lipid Res. 61 (8), 1150 (2020.)

  68. P. Chang, K. Augustin, K. Boddum, et al., Brain 139 (2), 431, (2016).

    Google Scholar 

  69. R. B. Aird and C. Gurchot, Arch. Neurol. Psychiatry 42 (3), 491 (1939).

    Google Scholar 

  70. A. Mosek, H. Natour, M. Y. Neufeld, et al., PLoS One 5 (6), e11162-1 (2010).

    ADS  Google Scholar 

  71. M. H. Martinez-Seara, T. Rog, M. Karttunen, et al., Epilepsia 45 (Suppl. 7), 199 (2004).

    Google Scholar 

  72. E. L. Bastiaanse, H. J. Jongsma, A. van der Laarse, et al., J. Membr. Biol. 136 (2), 135 (1993)

    Google Scholar 

  73. M. T. Baker, Anesth. Analg. 112 (2), 340 (2011).

    Google Scholar 

  74. H. Tsuchiya, Clin. Exp. Pharmacol. Physiol. 28 (4), 292 (2001).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors consider as a pleasant duty to thank O. Ostroumova, Yuri Ermakov, Denis Semyonov and Leonid Yakovenko for useful discussions, and I. Lavrinenko for technical assistance. We are also deeply grateful to the referee for careful reading our paper, positive feedback as well as interesting questions.

Funding

This work was performed under the support of the Cuban Science Foundation (FONCI)—Project on non-pharmacological antiepileptic therapy—coordinated by the Cuban Center for Neurosciences, and also was supported by the Program for Basic Research of State Academies of Sciences of Russia for 2013–2020 (topics nos. 01201363818 and 01201363820).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. D. Nechipurenko or J. L. Hernandez Caceres.

Ethics declarations

Authors declare no conflict of interests. This work does not include any description of research performed on humans or animals.

Additional information

Acronyms: PDS—paroxysmal depolarization shift, KD—ketogenic diet, PUFA—polyunsaturated fatty acids.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nechipurenko, Y.D., Reyes, R.C. & Caceres, J.L. Hypothesis on Pollution of Neuronal Membranes, Epilepsy and Ketogenic Diet. BIOPHYSICS 66, 956–964 (2021). https://doi.org/10.1134/S0006350921060129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921060129

Keywords:

Navigation