Log in

A Possible Mechanism of Modulation of Slow Sodium Channels in the Sensory Neuron Membrane by Short Peptides

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The possible mechanisms of ligand–receptor binding of arginine-containing tetrapeptides with the NaV1.8 channels in the primary sensory neuron were investigated. Ac-RERR-NH2 tetrapeptide, acting outside the neuronal membrane, was found to decrease voltage sensitivity of the examined channels. In contrast, the Ac-REАR-NH2 tetrapeptide did not exhibit the same effect. Conformational analysis was used to investigate the mechanisms of ligand–receptor binding of a number of studied short peptides; it suggested that positively charged guanidine side chains of two arginine residues played a key role in peptide binding. Another amino-acid residue (glutamic acid) should be located between these two arginine residues. Our calculations demonstrated that the mechanism of ligand–receptor binding could not be implemented if the distance between the guanidine groups in short peptide molecules was less than a defined threshold value. The results allow one to conclude that the Ac-RERR-NH2 tetrapeptide and several other peptides capable of binding with the NaV1.8 channel by the same molecular mechanism have the potential to become novel peripheral analgesic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. G. Kostyuk, N. S. Veselovsky, and A. Y. Tsyndrenko, Neuroscience 6, 2423 (1981).

    Article  Google Scholar 

  2. N. S. Veselovskii, P. G. Kostyuk, A. Ya. Tsyndrenko, Dokl. Akad. Nauk SSSR 249 (60), 1466 (1979).

    Google Scholar 

  3. M. S. Gold, D. B. Reichling, M. J. Shuster, et al., Proc. Natl. Acad. Sci. U. S. A. 93, 1108 (1996).

    Article  ADS  Google Scholar 

  4. S. V. Revenko and I. Yu. Gavrilov, Biochemistry (Moscow) Suppl. Ser. A: Membr. Cell Biol. 1 (1), 64 (2007).

    Google Scholar 

  5. L. V. Borovikova, D. V Borovikov, V. V. Ermishkin, et al., Prim. Sensory Neuron 2, 65 (1997).

    Article  Google Scholar 

  6. A. N. Akopian, L. Sivilotti, and J. N. Wood, Nature 379, 257 (1996).

    Article  ADS  Google Scholar 

  7. J. Lai, F. Porreca, J. C. Hunter, and M. S. Gold, Annu. Rev. Pharmacol. Toxicol. 44, 371 (2004).

    Article  Google Scholar 

  8. B. V. Krylov, I. V. Rogachevskii, T. N. Shelykh, et al., Frontiers in Pain Science, Vol. 1: New Non-Opioid Analgesics: Understanding Molecular Mechanisms on the Basis of Patch-Clamp and Quantum-Chemical Studies (Bentham Sci. Publ., Sharjah, UAE, 2017).

  9. R. I. Lehrer and T. Ganz, Blood 76, 2169 (1990).

    Article  Google Scholar 

  10. V. N. Kokryakov, The Biology o Antibiotics o Anial Origin (Nauka, St, Petersburg, 1999) [in Russian].

  11. V. B. Plakhova, I. V. Rogachevskii, B. F. Shchegolev, et al., Sensor. Sistemy 19 (2), 110 (2005).

    Google Scholar 

  12. V. B. Plakhova, B. F. Shchegolev, I. V. Rogachevskii, et al., Ross. Fiziol. Zh. im. I. M. Sechenova 86 (11), 1471 (2000).

    Google Scholar 

  13. V. B. Plakhova, I. V. Rogachevskii, T. N. Shelykh, et al., Med. Akad. Zh. 13 (3), 78 (2013).

    Google Scholar 

  14. V. B. Plakhova, I. V. Rogachevskii, T. N. Shelykh, et al., Sensor. Sistemy 30 (3), 234 (2016).

    Google Scholar 

  15. A. A. Elliott and J. R. Elliott, J. Physiol. (Lond.) 463, 39 (1993).

    Article  Google Scholar 

  16. P. G. Kostyuk, O. A. Krishtal, and V. I. Pidoplichko, Nature 257, 691 (1975).

    Article  ADS  Google Scholar 

  17. O. P. Hamill, A. Marty, E. Neher, et al., Pflugers Arch. 391, 85 (1981).

    Article  Google Scholar 

  18. B. V. Krylov, Yu. Yu. Vilin, S. A. Podzorova, et al., Sensor. Sistemy 10 (4), 52 (1996).

    Google Scholar 

  19. Y. V. Osipchuk and E. N. Timin, in Intracellular Perfusion of Excitable Cells, Ed. by P. G. Kostyuk and O. A. Krishtal (Wiley, 1984), pp. 103–129.

    Google Scholar 

  20. W. Almers, in Membranes: Ion Channels, Ed. by Yu. A. Chizmadzhev (Mir, Moscow, 1981), pp. 129–236.

  21. V. B. Plakhova, V. A. Penniyaynen, I. L. Yachnev, et al., Can. J. Physiol. Pharmacol. 97, 400 (2019).

    Article  Google Scholar 

  22. V. A. Penniyaynen, V. B. Plakhova, I. V. Rogachevsky, et al., Pathophysiology 26, 245 (2019).

    Article  Google Scholar 

  23. Z. Li and H. A. Scheraga, J. Mol. Struct. 179, 333 (1988).

    Article  Google Scholar 

  24. B. S. Zhorov, J. Struct. Chem. 22, 4 (1981).

    Article  Google Scholar 

  25. B. S. Zhorov, J. Struct. Chem. 23, 649 (1982).

    Article  Google Scholar 

  26. B. S. Zhorov and V. S. Ananthanarayanan, J. Biomol. Struct. Dyn. 14, 173 (1996).

    Article  Google Scholar 

  27. B. S. Zhorov and S. X. Lin, Proteins 38, 414 (2000).

    Article  Google Scholar 

  28. http://www.zmmsoft.com

  29. C. A. Fitch, G. Platzer, M. Okon, et al., Prot. Sci. 24, 752 (2015).

    Article  Google Scholar 

  30. S. J. Weiner, P. A. Kollman, D. A. Case, et al., J. Am. Chem. Soc. 106, 765 (1984).

    Article  Google Scholar 

  31. S. J. Weiner, P. A. Kollman, D. T. Nguyen, and D. A. Case, J. Comput. Chem. 7, 230 (1986).

    Article  Google Scholar 

  32. T. N. Shelykh, I. V. Rogachevsky, A. D. Nozdrachev, et al., Dokl. Biochem. Biophys. 466, 77 (2016).

    Article  Google Scholar 

  33. B. Spanier and F. Rohm, Compr. Physiol. 8, 843 (2018).

    Article  Google Scholar 

  34. F. H. Mourad and N. E. Saade, Prog. Neurobiol. 95, 149 (2011).

    Article  Google Scholar 

  35. X. Chen, R. F. Keep, Y. Liang, et al., Biochem. Pharmacol. 131, 89 (2017).

    Article  Google Scholar 

  36. Y. J. Fei, J. C. Liu, T. Fujita, et al., Biochem. Biophys. Res. Commun. 246, 39 (1998).

    Article  Google Scholar 

  37. V. Khavinson, N. Linkova, E. Kukanova, et al., J. Neurol. Neurosci. 8, 1 (2016)

    Google Scholar 

  38. N. Kolchina, V. Khavinson, N. Linkova, et al., Nucl. Acids Res. 47, 10553 (2019).

    Article  Google Scholar 

Download references

Funding

The research was conducted within a World-Class Research Center program and received funding from the Ministry of Education and Science of the Russian Federation (agreement no. 075-15-2020-921, November 13, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Rogachevsky.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interests.

Statement on the welfare of animals. All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Additional information

Translated by E. Sherstyuk

Abbreviations: AI, area index.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogachevsky, I.V., Kalinina, A.D., Penniyaynen, V.A. et al. A Possible Mechanism of Modulation of Slow Sodium Channels in the Sensory Neuron Membrane by Short Peptides. BIOPHYSICS 66, 579–588 (2021). https://doi.org/10.1134/S0006350921040205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921040205

Navigation