Log in

Modulation of the Activity of Succinate Dehydrogenase by Acetylation with Chemicals, Drugs, and Microbial Metabolites

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—The effects of acetylating and deacetylating compounds on the activity of succinate dehydrogenase, as well as on the membrane potential and calcium retention capacity of the isolated liver mitochondria, supported by the oxidation of succinate, has been investigated. The chemical reagent N-acetylimidazole, the microbial metabolite phenylacetate, along with the drugs acetylsalicylic acid and N-acetylcysteine, were used as acetylating compounds. These compounds reduced succinate dehydrogenase activity to different extents depending on the concentration and incubation conditions. An inhibitory analysis using intermediate electron carriers has shown that the ubiquinone-binding site of the enzyme undergoes acetylation. The inhibition was partially eliminated or prevented by pre-incubation of the mitochondria with nicotinamide adenine dinucleotide, a co-factor for deacetylation, and with polyamine spermidine, an acceptor of acetyl groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. J. Menzies, H. Zhang, E. Katsyuba, et al., Nat. Rev. Endocrinol. 12 (1), 43 (2016).

    Article  Google Scholar 

  2. W. G. Kaelin, Jr. and S.L. McKnight, Cell 153 (1), 56 (2013).

    Article  Google Scholar 

  3. C. Carrico, J. G. Meyer, W. He, et al., Cell Metab. 27 (3), 497 (2018).

    Article  Google Scholar 

  4. G. R. Wagner and R. M. Payne, J. Aging Res. (2011). doi 10.4061/2011/234875

  5. S. C. Kim, R. Sprung, Y. Chen, et al., Mol. Cell 23 (18), 607 (2006).

    Article  Google Scholar 

  6. L. M. Britton, A. Newhart, N. V. Bhanu, et al., Epigenetics 8 (10), 1101 (2013).

    Article  Google Scholar 

  7. A. M. James, K. Hoogewijs, A. Logan, et al., Cell Rep. 18 (9), 2105 (2017).

    Article  Google Scholar 

  8. J. Baeza, M. J. Smallegan, and J. M. Denu, Trends Biochem. Sci. 41 (3), 231 (2016).

    Article  Google Scholar 

  9. E. Verdin, M. D. Hirschey, L. W. Finley, et al., Trends Biochem. Sci. 35 (12), 669 (2010).

    Article  Google Scholar 

  10. A. S. Olia, K. Barker, C. E. McCullough, et al., ACS Chem. Biol. 10 (9), 2034 (2015). http://www.ncbi.nlm.nih.gov/pubmed/26083674.

    Article  Google Scholar 

  11. G. R. Wagner and M. D. Hirschey, Mol. Cell. 54 (1), 5 (2014).

    Article  Google Scholar 

  12. G. R. Wagner and R. M. Payne, J. Biol. Chem. 288 (40), 29036 (2013).

    Article  Google Scholar 

  13. E. V. Grishina, M. Kh. Galimova, et al., Biol. Membrany 32 (5–6), 319 (2015).

  14. L. W. Finley, W. Haas, V. Desquiret-Dumas, et al., PLoS One 6 (8), e23295 (2011)

    Article  ADS  Google Scholar 

  15. H. Cimen, M. J. Han, Y. Yang, et al., Biochemistry 49, 304 (2010).

    Article  Google Scholar 

  16. J. Fernandes, A. Weddle, C. S. Kinter, et al., Biochemistry 54 (25), 4008 (2015).

    Article  Google Scholar 

  17. M. Waldecker, T. Kautenburger, H. Daumann, et al., J. Nutr. Biochem. 19 (9), 587 (2008).

    Article  Google Scholar 

  18. H. Zhang, M. Du, Q. Yang, et al., J. Nutr. Biochem. 27, 299 (2016).

    Article  Google Scholar 

  19. J. Sun, Q. Wu, H. Sun, et al., Int. J. Mol. Sci. 15 (11), 21069 (2014).

    Article  Google Scholar 

  20. M. L. Soliman, M. D. Smith, H. M. Houdek, et al., J. Neuroinflammation 9, 51 (2012).

    Article  Google Scholar 

  21. B. T. Weinert, V. Iesmantavicius, S. A. Wagner, et al., Mol. Cell. 51, 265 (2013).

    Article  Google Scholar 

  22. M. L. Kuhn, B. Zemaitaitis, L. I. Hu, et al., PloS One 9, e94816 (2014).

    Article  ADS  Google Scholar 

  23. G. D. Cymes, M. M. Iglesias, and C. Wolfenstein-Todel, Int. J. Pept. Prot. Res. 42 (1), 33 (1993).

    Article  Google Scholar 

  24. Y. Nakae and M. Shono, Histochem. J. 18 (4), 169 (1986).

    Article  Google Scholar 

  25. J. M. Argello and J. H. Kaplan, Biochemistry 29 (24), 5775 (1990).

    Article  Google Scholar 

  26. M. H. Tatham, C. Cole, P. Scullion, et al., Mol. Cell Proteomics 16 (2), 310 (2017).

    Article  Google Scholar 

  27. R. Uppala, B. Dudiak, M. E. Beck, et al., Biochem. Biophys. Res. Commun. 482 (2), 346 (2017).

    Article  Google Scholar 

  28. N. I. Fedotcheva, E. G. Litvinova, M. V. Zakharchenko, et al., Biochemistry (Moscow) 82 (2), 192 (2017).

    Article  Google Scholar 

  29. T. A. Fedotcheva, V. V. Teplova, and N. I. Fedotcheva, Biol. Membrany 35 (1), 79 (2018).

    Google Scholar 

  30. L. Guo, A. A. Shestov, A. J. Worth, et al., J. Biol. Chem. 291 (1), 42 (2016).

    Article  Google Scholar 

  31. Y. Zhang, J. Yin, L. Zhang, et al., Neurol. Res. 39 (3), 248 (2017).

    Article  ADS  Google Scholar 

  32. S. Mandal, A. Mandal, and M. H. Park, Biochem. J. 468 (3), 435 (2015).

    Article  Google Scholar 

  33. A. C. Nulton-Persson, L. I. Szweda, and H. A. Sadek, J. Cardiovasc. Pharmacol. 44 (5), 591 (2004).

    Article  Google Scholar 

  34. H. Raza, A. John, and S. Benedict, Eur. J. Pharmacol. 668 (1–2), 15 (2011).

  35. T. Tomoda, K. Takeda, T. Kurashige, et al., Liver 14 (2), 103 (1994).

    Article  Google Scholar 

  36. K. W. Oh, T. Qian, D. A. Brenner, et al., Toxicol. Sci. 73 (1), 44 (2003).

    Article  Google Scholar 

  37. X. Wang, A. Shojaie, Y. Zhang, et al., PLoS One 12 (5), e0178444 (2017).

    Article  Google Scholar 

  38. N. I. Fedotcheva, V. V. Teplova, and N. V. Beloborodova, Biochemistry (Moscow) Suppl. Ser. A: Membr. Cell Biol. 4 (1), 50 (2010).

    Google Scholar 

  39. N. I. Fedotcheva, V. V. Teplova, and N. V. Beloborodova, Biophysics (Moscow) 57 (5), 634 (2012).

    Article  Google Scholar 

  40. V. T. Vachharajani, T. Liu, X. Wang, et al., J. Immunol. Res. 6, 8167273 (2016).

    Google Scholar 

  41. T. F. Liu, V. T. Vachharajani, B. K. Yoza, et al., J. Biol. Chem. 287 (31), 25758 (2012).

    Article  Google Scholar 

  42. A. E. Pegg, Am. J. Physiol. Endocrinol. Metab. 294 (6), E995 (2008).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, projects no. 16-04-00636 and 16-04-00342, and the Russian Science Foundation, project no. 15-15-00110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Fedotcheva.

Additional information

Translated by E. Puchkov

Abbreviations: SDH, succinate dehydrogenase; TTFA, thenoyltrifluoroacetate; PMS, phenazine methosulfate; NAD, nicotinamide adenine dinucleotide; DCPIP, dichlorophenolindophenol; MTT, 3-(4,5-dimethylthiazole-2-il)-2,5-diphenyl-tetrazolium bromide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotcheva, N.I., Kondrashova, M.N., Litvinova, E.G. et al. Modulation of the Activity of Succinate Dehydrogenase by Acetylation with Chemicals, Drugs, and Microbial Metabolites. BIOPHYSICS 63, 743–750 (2018). https://doi.org/10.1134/S0006350918050081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918050081

Navigation