Log in

A method of acoustic analysis for detection of bacteriophage-infected microbial cells

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The dependence of the changes of physical parameters of the suspension of Azospirillum brasilense Sp7 cells infected by FAb-Sp7 bacteriophage on their number and exposure time was studied using a biological sensor based on a piezoelectric resonator with a lateral electric field. The change in the value of the analytical signal was recorded at 1 minute from the beginning of the infection of the cells by bacteriophage. The selectivity of the action of the FAb-Sp7 bacteriophage was studied for Azospirillum brasilense (strains Cd, Sp107, Sp245, Jm6B2, Br14, KR77, S17, S27, SR55, and SR75), A. lipoferum (strains Sp59b, SR65, and RG20a), A. halopraeferans Au4, Nitrospirillum amazonense Am14, Niveispirillum irakense (strains KBC1 and KA3) bacteria, as well as for heterologous bacteria of the genera Escherichia coli (strains XL-1 and B-878), Pseudomonas putida (strains C-11 and BA-11), and Acinetobacter calcoaceticum A-122. The limit of the reliable determination of the concentration of microbial cells during bacteriophage infection process was found: ~104 cells/mL. At the same time, the presence of heterologous cell cultures (E. coli XL-1 cells) did not complicate the detection. It was shown that the method of electroacoustical analysis of cell suspensions can be used for the detection of microbial cells of Azospirillum infected by the FAb-Sp7 bacteriophage. The results are promising for the development of methods for determining and controlling the number of soil microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Beijerinck, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. B 63, 353 (1925).

    Google Scholar 

  2. J. Döbereiner and J. M. Day, in Proc. Int. Symp. on N2-Fixation (Washington, DC, 1976), pp. 518–537.

    Google Scholar 

  3. O. Steenhoudt and J. Vanderleyden, FEMS Microbiol. 24, 487 (2000).

    Article  Google Scholar 

  4. Y. Bashan, G. Holguin, and L. E. de-Bashan, Can. J. Microbiol. 50, 521 (2004).

    Article  Google Scholar 

  5. V. V. Ignatova, Molecural Bases of Associative Microorganisms–Plants Interactions (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  6. J. I. Baldani and V. L. Baldani, Acad. Bras. Cienc. 77 (3), 549 (2005).

    Article  Google Scholar 

  7. A. L. Mulyukin, N. E. Suzina, A. Yu. Pogorelova, et al., Microbiology (Moscow) 78 (1), 33 (2009).

    Article  Google Scholar 

  8. Yu. A. Chernova and G. L. Burygin, Izv. Saratov. Gos. Univ., Ser. Khim Biol. Ekol. 8 (2), 76 (2008).

    Google Scholar 

  9. I. V. Maksimov, R. R. Abizgil’dina, and L. I. Pusenkova, Appl. Biochem. Microbiol. 47 (4), 333 (2011).

    Article  Google Scholar 

  10. A. I. Krasov, Candidate’s Dissertation in Biology (Saratov, 2009).

    Google Scholar 

  11. M. Schmelcher and M. Loessner, in Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems, Ed by M. Zourob, S. Elwary, and A. P. F. Turner (Springer, New York, 2008), pp. 731–754.

    Book  Google Scholar 

  12. S. Ripp, Adv. Biochem. Engin. Biotechnol. 118, 65 (2010).

    Google Scholar 

  13. P. Gascoyne, R. Pethig, J. Satayavivad, et al., Biochim. Biophys. Acta 1323, 240 (1997).

    Article  Google Scholar 

  14. R. D. Vaughan, C. K. O’Sullivan, and G. G. Cuilbault, Enzyme Microb. Technol. 29, 635 (2001).

    Article  Google Scholar 

  15. P. Kristensen and G. Winter, Fold. Des. 3 (5), 321 (1998).

    Article  Google Scholar 

  16. A. Ballato, E. R. Hatch, M. Mizan, et al., IEEE Trans. Ultrason., Ferroelectr. Freq. Contr. 33 (4), 385 (1986).

    Article  ADS  Google Scholar 

  17. Y. Hu, L. A. French, Jr., K. Radecsky, et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 51 (11), 1373 (2004).

    Article  Google Scholar 

  18. W. Pinkham, M. Wark, S. Winters, et al., in Proc. IEEE Ultrason. Symp. (2005), pp. 2279–2283.

    Google Scholar 

  19. M. Wark, B. Kalanyan, L. Ellis, et al., in Proc. IEEE Ultrason. Symp. (2007), pp. 1217–1220.

    Google Scholar 

  20. O. I. Guliy, B. D. Zaitsev, I. E. Kuznetsova, et al., Biophysics (Moscow) 57 (3), 336 (2012).

    Article  Google Scholar 

  21. O. I. Guliy, B. D. Zaitsev, I. E. Kuznetsova, et al., Microbiology (Moscow) 82 (2), 215 (2013).

    Article  Google Scholar 

  22. O. I. Guliy, O. A. Karavaeva, V. A. Velikov, et al., Vopr. Virusol. 1, 45 (2016).

    Google Scholar 

  23. M. H. Adams, Bacteriophages (Interscience Publ., New York, 1959; Medgiz, Moscow, 1961).

    Google Scholar 

  24. B. D. Zaitsev, I. E. Kuznetsova, A. M. Shikhabudinov, et al., Tech. Phys. Lett. 37 (11), 27 (2011).

    Google Scholar 

  25. O. I. Guliy, B. D. Zaitsev, I. E. Kuznetsova, et al., Biophysics (Moscow) 61 (1), 52 (2016).

    Article  Google Scholar 

  26. E. M. Click and R. E. Webster, J. Bacteriol. 179, 6464 (1997).

    Article  Google Scholar 

  27. H. Endemann and P. Model, J. Mol. Biol. 250 (4), 496 (1995).

    Article  Google Scholar 

  28. A. S. Labinskaya, Microbiology and Microbiological Research Techniques (Meditsina, Moscow, 1978) [in Russian].

    Google Scholar 

  29. S. Y. Lin, A. Hameed, F. T. Shen, et al., Young Antonie van Leeuwenhoek 105 (6), 1149 (2014).

    Article  Google Scholar 

  30. O. N. Konnova, A. S. Boiko, G. L. Burygin, et al., Microbiology (Moscow) 77 (3), 305 (2008)

    Article  Google Scholar 

  31. Yu. A. Filip’echeva, Candidate’s Dissertation in Biology (Saratov, 2011).

    Google Scholar 

  32. L. Yu. Matora, G. L. Burygin, and S. Yu. Shchyogolev, Microbiology (Moscow) 77 (2), 166 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Guliy.

Additional information

Original Russian Text © O.I. Guliy, B.D. Zaitsev, A.M. Shikhabudinov, I.A. Borodina, O.A. Karavaeva, O.S. Larionova, A.A. Volkov, A.A. Teplykh, 2017, published in Biofizika, 2017, Vol. 62, No. 4, pp. 712–721.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guliy, O.I., Zaitsev, B.D., Shikhabudinov, A.M. et al. A method of acoustic analysis for detection of bacteriophage-infected microbial cells. BIOPHYSICS 62, 580–587 (2017). https://doi.org/10.1134/S000635091704008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091704008X

Keywords

Navigation