Log in

Gypenoside A Protects Human Myocardial Cells from Ischemia/Reperfusion Injury via the circ_0010729/miR-370-3p/RUNX1 Axis

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Ischemia/reperfusion (I/R) injury is one of the major causes of cardiovascular disease. Gypenoside A (GP), the main active component of Gynostemma pentaphyllum, alleviates myocardial I/R injury. Circular RNAs (circRNAs) and microRNAs (miRNAs) are involved in the I/R injury. We explored the protective effect of GP on human cardiomyocytes (HCMs) via the circ_0010729/miR-370-3p/RUNX1 axis. Overexpression of circ_0010729 abolished the effects of GP on HMC, such as suppression of apoptosis and increase in cell viability and proliferation. Overexpression of miR-370-3p reversed the effect of circ_0010729 overexpression, resulting in the stimulation of HMC viability and proliferation and inhibition of apoptosis. The knockdown of miR-370-3p suppressed the effects of GP in HCMs. RUNX1 silencing counteracted the effect of miR-370-3p knockdown and maintained GP-induced suppression of apoptosis and stimulation of HMC viability and proliferation. The levels of RUNX1 mRNA and protein were reduced in cells expressing miR-370-3p. In conclusion, this study confirmed that GP alleviated the I/R injury of myocardial cell via the circ_0010729/miR-370-3p/RUNX1 axis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Yellon, D. M., and Hausenloy, D. J. (2007) Myocardial reperfusion injury, New Engl. J. Med., 357, 1121-1135, https://doi.org/10.1056/NEJMra071667.

    Article  CAS  PubMed  Google Scholar 

  2. Bhaskar, S., Stanwell, P., Cordato, D., Attia, J., and Levi, C. (2018) Reperfusion therapy in acute ischemic stroke: dawn of a new era? BMC Neurol., 18, 8, https://doi.org/10.1186/s12883-017-1007-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Davidson, S. M., Ferdinandy, P., Andreadou, I., Bøtker, H. E., Heusch, G., Ibáñez, B., Ovize, M., Schulz, R., Yellon, D. M., Hausenloy, D. J., and Garcia-Dorado, D. (2019) Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week, J. Am. Coll. Cardiol., 73, 89-99, https://doi.org/10.1016/j.jacc.2018.09.086.

    Article  PubMed  Google Scholar 

  4. Galagudza, M. M., Blokhin, I. O., Shmonin, A. A., and Mischenko, K. A. (2008) Reduction of myocardial ischemia-reperfusion injury with pre- and postconditioning: molecular mechanisms and therapeutic targets, Cardiovasc. Hematol. Disord. Drug Targets, 8, 47-65, https://doi.org/10.2174/187152908783884966.

    Article  CAS  PubMed  Google Scholar 

  5. Bhatt, D. L. (2018) Percutaneous coronary intervention in 2018, Jama, 319, 2127-2128, https://doi.org/10.1001/jama.2018.5281.

    Article  PubMed  Google Scholar 

  6. Rapaport, E. (1992) Thrombolytic therapy for myocardial ischemia and infarction, Ann. Epidemiol., 2, 543-548, https://doi.org/10.1016/1047-2797(92)90104-x.

    Article  CAS  PubMed  Google Scholar 

  7. Turer, A. T., and Hill, J. A. (2010) Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy, Am. J. Cardiol., 106, 360-368, https://doi.org/10.1016/j.amjcard.2010.03.032.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li, K., Ma, C., Li, H., Dev, S., He, J., and Qu, X. (2019) Medicinal value and potential therapeutic mechanisms of Gynostemma pentaphyllum (Thunb.) makino and its derivatives: an overview, Curr. Top. Med. Chem., 19, 2855-2867, https://doi.org/10.2174/1568026619666191114104718.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, J., and Yang, J. L. (2017) Further new gypenosides from Jiaogulan (Gynostemma pentaphyllum), J. Agric. Food Chem., 65, 5926-5934, https://doi.org/10.1021/acs.jafc.7b01477.

    Article  CAS  PubMed  Google Scholar 

  10. He, Q., Li, J. K., Li, F., Li, R. G., Zhan, G. Q., Li, G., Du, W. X., and Tan, H. B. (2015) Mechanism of action of gypenosides on type 2 diabetes and non-alcoholic fatty liver disease in rats, World J. Gastroenterol., 21, 2058-2066, https://doi.org/10.3748/wjg.v21.i7.2058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wan, Z. H., and Zhao, Q. (2017) Gypenoside inhibits interleukin-1β-induced inflammatory response in human osteoarthritis chondrocytes, J. Biochem. Mol. Toxicol., 31, e21926, https://doi.org/10.1002/jbt.21926.

    Article  CAS  Google Scholar 

  12. Yan, H., Wang, X., Niu, J., Wang, Y., Wang, P., and Liu, Q. (2014) Anti-cancer effect and the underlying mechanisms of gypenosides on human colorectal cancer SW-480 cells, PLoS One, 9, e95609, https://doi.org/10.1371/journal.pone.0095609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song, Y. N., Dong, S., Wei, B., Liu, P., Zhang, Y. Y., and Su, S. B. (2017) Metabolomic mechanisms of gypenoside against liver fibrosis in rats: an integrative analysis of proteomics and metabolomics data, PLoS One, 12, e0173598, https://doi.org/10.1371/journal.pone.0173598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu, H., Zhang, H., Zhao, W., Guo, L., Li, X., Li, Y., Zhang, X., and Sun, Y. (2016) Gypenoside protects against myocardial ischemia-reperfusion injury by inhibiting cardiomyocytes apoptosis via Inhibition of CHOP pathway and activation of PI3K/Akt pathway in vivo and in vitro, Cell Physiol. Biochem., 39, 123-136, https://doi.org/10.1159/000445611.

    Article  CAS  PubMed  Google Scholar 

  15. Phu, H. T., Thuan, D. T. B., Nguyen, T. H. D., Posadino, A. M., Eid, A. H., and Pintus, G. (2019) Herbal medicine for slowing aging and aging-associated conditions: efficacy, mechanisms, and safety, Curr. Vasc. Pharmacol., 18, 369-393, https://doi.org/10.2174/1570161117666190715121939.

    Article  CAS  Google Scholar 

  16. Chang, L., Shi, R., Wang, X., and Bao, Y. (2020) Gypenoside A protects ischemia/reperfusion injuries by suppressing miR-143-3p level via the activation of AMPK/Foxo1 pathway, Biofactors, 46, 432-440, https://doi.org/10.1002/biof.1601.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, H. D., Jiang, L. H., Sun, D. W., Hou, J. C., and Ji, Z. L. (2018) CircRNA: a novel type of biomarker for cancer, Breast Cancer, 25, 1-7, https://doi.org/10.1007/s12282-017-0793-9.

    Article  PubMed  Google Scholar 

  18. Patop, I. L., Wüst, S., and Kadener, S. (2019) Past, present, and future of circRNAs, EMBO J., 38, e100836, https://doi.org/10.15252/embj.2018100836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rong, D., Sun, H., Li, Z., Liu, S., Dong, C., Fu, K., Tang, W., and Cao, H. (2017) An emerging function of circRNA-miRNAs-mRNA axis in human diseases, Oncotarget, 8, 73271-73281, https://doi.org/10.18632/oncotarget.19154.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Luan, W., Shi, Y., Zhou, Z., **a, Y., and Wang, J. (2018) circRNA_0084043 promote malignant melanoma progression via miR-153-3p/Snail axis, Biochem. Biophys. Res. Commun., 502, 22-29, https://doi.org/10.1016/j.bbrc.2018.05.114.

    Article  CAS  PubMed  Google Scholar 

  21. Wu, H., Wu, S., Zhu, Y., Ye, M., Shen, J., Liu, Y., Zhang, Y., and Bu, S. (2019) Hsa_circRNA_0054633 is highly expressed in gestational diabetes mellitus and closely related to glycosylation index, Clin. Epigenetics, 11, 22, https://doi.org/10.1186/s13148-019-0610-8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Akhter, R. (2018) Circular RNA and Alzheimer’s disease, Adv. Exp. Med. Biol., 1087, 239-243, https://doi.org/10.1007/978-981-13-1426-1_19.

    Article  CAS  PubMed  Google Scholar 

  23. Zhou, B., and Yu, J. W. (2017) A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1, Biochem. Biophys. Res. Commun., 487, 769-775, https://doi.org/10.1016/j.bbrc.2017.04.044.

    Article  CAS  PubMed  Google Scholar 

  24. Tang, C. M., Zhang, M., Huang, L., Hu, Z. Q., Zhu, J. N., **ao, Z., Zhang, Z., Lin, Q. X., Zheng, X. L., Yang, M., Wu, S. L., Cheng, J. D., and Shan, Z. X. (2017) CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts, Sci. Rep., 7, 40342, https://doi.org/10.1038/srep40342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, K., Long, B., Liu, F., Wang, J. X., Liu, C. Y., Zhao, B., Zhou, L. Y., Sun, T., Wang, M., Yu, T., Gong, Y., Liu, J., Dong, Y. H., Li, N., and Li, P. F. (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223, Eur. Heart. J., 37, 2602-2611, https://doi.org/10.1093/eurheartj/ehv713.

    Article  CAS  PubMed  Google Scholar 

  26. Yu, H., Shi, L., Qi, G., Zhao, S., Gao, Y., and Li, Y. (2016) Gypenoside protects cardiomyocytes against ischemia-reperfusion injury via the inhibition of mitogen-activated protein kinase mediated nuclear Factor kappa B pathway in vitro and in vivo, Front. Pharmacol., 7, 148, https://doi.org/10.3389/fphar.2016.00148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Doxey, R. (2019) Stable ischemic heart disease, Ann. Intern. Med., 171, 862-863, https://doi.org/10.7326/L19-0603.

    Article  PubMed  Google Scholar 

  28. Sunagawa, G., Saku, K., Arimura, T., Nishikawa, T., Mannoji, H., Kamada, K., Abe, K., Kishi, T., Tsutsui, H., and Sunagawa, K. (2019) Mechano-chronotropic unloading during the acute phase of myocardial infarction markedly reduces infarct size via the suppression of myocardial oxygen consumption, J. Cardiovasc. Transl., 12, 124-134, https://doi.org/10.1007/s12265-018-9809-x.

    Article  Google Scholar 

  29. Li, J., Cao, G.-Y., Zhang, X.-F., Meng, Z.-Q., Gan, L., Li, J.-X., Lan, X.-Y., Yang, C.-L., and Zhang, C.-F. (2020) Chinese medicine She-**ang-**n-Tong-Ning, containing Moschus, Corydalis and Ginseng, protects from myocardial ischemia injury via angiogenesis, Am. J. Chinese. Med., 48, 107-126, https://doi.org/10.1142/S0192415X20500068.

    Article  CAS  Google Scholar 

  30. Zhao, D., Feng, P., Sun, Y., Qin, Z., Zhang, Z., Tan, Y., Gao, E., Lau, W. A.-O., Ma, X., Yang, J., Yu, S., Xu, X., Yi, D., and Yi, W. A.-O. X. (2018) Cardiac-derived CTRP9 protects against myocardial ischemia/reperfusion injury via calreticulin-dependent inhibition of apoptosis, Cell Death Dis., 9, 723, https://doi.org/10.1038/s41419-018-0726-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang, L., Shi, R., Wang, X., and Bao, Y. (2019) Gypenoside A protects ischemia/reperfusion injuries by suppressing miR-143-3p level via the activation of AMPK/Foxo1 pathway, Biofactors, 46, 432-440, https://doi.org/10.1002/biof.1601.

    Article  CAS  PubMed  Google Scholar 

  32. Dang, R. Y., Liu, F. L., and Li, Y. (2017) Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1α axis, Biochem. Biophys. Res. Commun., 490, 104-110, https://doi.org/10.1016/j.bbrc.2017.05.164.

    Article  CAS  PubMed  Google Scholar 

  33. **, Q., and Chen, Y. (2019) Silencing circular RNA circ_0010729 protects human cardiomyocytes from oxygen-glucose deprivation-induced injury by up-regulating microRNA-145-5p, Mol. Cell. Biochem., 462, 185-194, https://doi.org/10.1007/s11010-019-03621-9.

    Article  CAS  PubMed  Google Scholar 

  34. Jia, B., Wang, Z., Sun, X., Chen, J., Zhao, J., and Qiu, X. (2019) Long noncoding RNA LINC00707 sponges miR-370-3p to promote osteogenesis of human bone marrow-derived mesenchymal stem cells through upregulating WNT2B, Stem Cell Res. Ther., 10, 67, https://doi.org/10.1186/s13287-019-1161-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, J., Liu, G., Wu, Y., Ma, J., Wu, H., **e, Z., Chen, S., Yang, Y., Wang, S., Shen, P., Fang, Y., Fan, S., Shen, S., and Fang, X. (2019) CircMYO10 promotes osteosarcoma progression by regulating miR-370-3p/RUVBL1 axis to enhance the transcriptional activity of β-catenin/LEF1 complex via effects on chromatin remodeling, Mol. Cancer, 18, 150, https://doi.org/10.1186/s12943-019-1076-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, F., Feng, Z., Zhu, J., Liu, P., Yang, C., Huang, R., and Deng, Z. (2018) Emerging roles of circRNA_NEK6 targeting miR-370-3p in the proliferation and invasion of thyroid cancer via Wnt signaling pathway, Cancer Biol. Ther., 19, 1139-1152, https://doi.org/10.1080/15384047.2018.1480888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sood, R., Kamikubo, Y., and Liu, P. (2017) Role of RUNX1 in hematological malignancies, Blood, 129, 2070-2082, https://doi.org/10.1182/blood-2016-10-687830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hong, D., and Fritz, A. J. (2019) RUNX1-dependent mechanisms in biological control and dysregulation in cancer, J. Cell Physiol., 234, 8597-8609, https://doi.org/10.1002/jcp.27841.

    Article  CAS  PubMed  Google Scholar 

  39. McCarroll, C. S., He, W., Foote, K., Bradley, A., McGlynn, K., Vidler, F., Nixon, C., Nather, K., Fattah, C., Riddell, A., Bowman, P., Elliott, E. B., Bell, M., Hawksby, C., MacKenzie, S. M., Morrison, L. J., Terry, A., Blyth, K., Smith, G. L., McBride, M. W., et al. (2018) Runx1 deficiency protects against adverse cardiac remodeling after myocardial infarction, Circulation, 137, 57-70, https://doi.org/10.1161/circulationaha.117.028911.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study design, interpretation of results, analysis of data, and review of the manuscript. H. Ma and Y. Lu conducted the experiments and wrote the manuscript; D. Zhu, Zh. Jiang, and F. Zhang analyzed the data, J. Peng and L. Wang reviewed the text of the article. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Jun Peng or Li Wang.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Lu, Y., Zhu, D. et al. Gypenoside A Protects Human Myocardial Cells from Ischemia/Reperfusion Injury via the circ_0010729/miR-370-3p/RUNX1 Axis. Biochemistry Moscow 89, 973–986 (2024). https://doi.org/10.1134/S000629792405016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792405016X

Keywords

Navigation