Log in

Response of PRIMPOL-Knockout Human Lung Adenocarcinoma A549 Cells to Genotoxic Stress

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Human DNA primase/polymerase PrimPol synthesizes DNA primers de novo after replication fork stalling at the sites of DNA damage, thus contributing to the DNA damage tolerance. The role of PrimPol in response to the different types of DNA damage is poorly understood. We knocked out the PRIMPOL gene in the lung carcinoma A549 cell line and characterized the response of the obtained cells to the DNA damage caused by hydrogen peroxide, methyl methanesulfonate (MMS), cisplatin, bleomycin, and ionizing radiation. The PRIMPOL knockout reduced the number of proliferating cells and cells in the G2 phase after treatment with MMS and caused a more pronounced delay of the S phase in the cisplatin-treated cells. Ionizing radiation at a dose of 10 Gy significantly increased the content of apoptotic cells among the PRIMPOL-deficient cells, while the proportion of cells undergoing necroptosis increased in both parental and knockout cells at any radiation dose. The viability of PRIMPOL-deficient cells upon the hydrogen peroxide-induced oxidative stress increased compared to the control cells, as determined by the methyl tetrazolium (MTT) assay. The obtained data indicate the involvement of PRIMPOL in the modulation of adaptive cell response to various types of genotoxic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

EdU:

5-ethynyl-2′-deoxyuridine

MMS:

methyl methanesulfonate

MTT:

methyl tetrazolium

PI:

propidium iodide

PrimPol:

primase-polymerase

RAD51:

RAD51 recombinase

References

  1. Ignatov, A. V., Bondarenko, K. A., and Makarova, A. V. (2017) Non-bulky lesions in human DNA: the ways of formation, repair, and replication, Acta Naturae, 9, 12-26, https://doi.org/10.32607/20758251-2017-9-3-12-26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vaisman, A., and Woodgate, R. (2017) Translesion DNA polymerases in eukaryotes: what makes them tick? Crit. Rev. Biochem. Mol. Biol., 52, 274-303, https://doi.org/10.1080/10409238.2017.1291576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jain, R., Aggarwal, A. K., and Rechkoblit, O. (2018) Eukaryotic DNA polymerases, Curr. Opin. Struct. Biol., 53, 77-87, https://doi.org/10.1016/j.sbi.2018.06.003.

    Article  CAS  PubMed  Google Scholar 

  4. Dash, R. C., and Hadden, K. (2021) Protein-protein interactions in translesion synthesis, Molecules, 26, 5544, https://doi.org/10.3390/molecules26185544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. García-Gómez, S., Reyes, A., Martínez-Jiménez, M. I., Chocrón, S., Mourón, S., et al. (2013) PrimPol, an archaic primase/polymerase operating in human cells, Mol. Cell, 52, 541-553, https://doi.org/10.1016/j.molcel.2013.09.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bianchi, J., Rudd, S. G., Jozwiakowski, S. K., Bailey, L. J., Soura, V., et al. (2013) Primpol bypasses UV photoproducts during eukaryotic chromosomal DNA replication, Mol. Cell, 52, 566-573, https://doi.org/10.1016/j.molcel.2013.10.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wan, L., Lou, J., **a, Y., Su, B., Liu, T., et al. (2013) HPrimpol1/CCDC111 is a human DNA primase-polymerase required for the maintenance of genome integrity, EMBO Rep., 14, 1104-1112, https://doi.org/10.1038/embor.2013.159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iyer, L. M., Koonin, E. V., Leipe, D. D., and Aravind, L. (2005) Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members, Nucleic Acids Res., 33, 3875-3896, https://doi.org/10.1093/nar/gki702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. González-Acosta, D., Blanco-Romero, E., Ubieto-Capella, P., Mutreja, K., Míguez, S., et al. (2021) PrimPol-mediated repriming facilitates replication traverse of DNA interstrand crosslinks, EMBO J., 40, e106355, https://doi.org/10.15252/embj.2020106355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Piberger, A. L., Bowry, A., Kelly, R., Walker, A. K., Gonzalez, D., Bailey, L. J., et al. (2020) PrimPol-dependent single-stranded gap formation mediates homologous recombination at bulky DNA adducts, Nat. Commun., 11, 5863, https://doi.org/10.1038/s41467-020-19570-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Butler, T. J., Estep, K. N., Sommers, J. A., Maul, R. W., Moore, A. Z., Bandinelli, S., et al. (2020) Mitochondrial genetic variation is enriched in G-quadruplex regions that stall DNA synthesis in vitro, Hum. Mol. Genet., 29, 1292-1309, https://doi.org/10.1093/hmg/ddaa043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Šviković, S., Crisp, A., Tan-Wong, S. M., Guilliam, T. A., Doherty, A. J., Proudfoot, N. J., Guilbaud, G., and Sale, J. E. (2019) R-loop formation during S phase is restricted by PrimPol-mediated repriming, EMBO J., 38, e99793, https://doi.org/10.15252/embj.201899793.

    Article  CAS  PubMed  Google Scholar 

  13. Quinet, A., Tirman, S., Jackson, J., Šviković, S., Lemaçon, D., et al. (2019) PRIMPOL-mediated adaptive response suppresses replication fork reversal in BRCA-deficient cells, Mol. Cell, 77, 461-474.e9, https://doi.org/10.1016/j.molcel.2019.10.008.

    Article  CAS  PubMed  Google Scholar 

  14. Torregrosa-Muñumer, R., Forslund, J., Goffart, S., Pfeiffer, A., Stojkovic, G., et al. (2017) PrimPol is required for replication reinitiation after mtDNA damage, Proc. Natl. Acad. Sci. USA, 114, 11398-11403, https://doi.org/10.1073/pnas.1705367114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kobayashi, K., Guilliam, T. A., Tsuda, M., Yamamoto, J., Bailey, L. J., Iwai, S., Takeda, S., Doherty, A. J., and Hirota, K. (2016) Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides, Cell Cycle, 15, 1997-2008, https://doi.org/10.1080/15384101.2016.1191711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taglialatela, A., Leuzzi, G., Sannino, V., Cuella-Martin, R., Huang, J. W., et al. (2021) REV1-Polζ maintains the viability of homologous recombination-deficient cancer cells through mutagenic repair of PRIMPOL-dependent ssDNA gaps, Mol. Cell, 81, 4008-4025.e7, https://doi.org/10.1016/j.molcel.2021.08.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Makarova, A. V., Boldinova, E. O., Belousova, E. A., and Lavrik, O. I. (2018) In vitro lesion bypass by human PrimPol, DNA Rep., 70, 18-24, https://doi.org/10.1016/j.dnarep.2018.07.009.

    Article  CAS  Google Scholar 

  18. Guilliam, T. A., Jozwiakowski, S. K., Ehlinger, A., Barnes, R. P., Rudd, S. G., et al. (2015) Human PrimPol is a highly error-prone polymerase regulated by single-stranded DNA binding proteins, Nucleic Acids Res., 43, 1056-1068, https://doi.org/10.1093/nar/gku1321.

    Article  CAS  PubMed  Google Scholar 

  19. Zafar, M. K., Ketkar, A., Lodeiro, M. F., Cameron, C. E., and Eoff, R. L. (2014) Kinetic analysis of human PrimPol DNA polymerase activity reveals a generally error-prone enzyme capable of accurately bypassing 7,8-dihydro-8-oxo-2′-deoxyguanosine, Biochemistry, 53, 6584-6594, https://doi.org/10.1021/bi501024u.

    Article  CAS  PubMed  Google Scholar 

  20. Boldinova, E. O., Yudkina, A. V., Shilkin, E. S., Gagarinskaya, D. I., Baranovskiy, A. G., et al. (2021) Translesion activity of PrimPol on DNA with cisplatin and DNA-protein cross-links, Sci. Rep., 11, 17588, https://doi.org/10.1038/s41598-021-96692-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mourón, S., Rodriguez-Acebes, S., Martínez-Jiménez, M. I., García-Gómez, S., Chocrón, S., Blanco, L., and Méndez, J. (2013) Repriming of DNA synthesis at stalled replication forks by human PrimPol, Nat. Struct. Mol. Biol., 20, 1383-1389, https://doi.org/10.1038/nsmb.2719.

    Article  CAS  PubMed  Google Scholar 

  22. Bailey, L. J., Bianchi, J., Hégarat, N., Hochegger, H., and Doherty, A. J. (2016) PrimPol-deficient cells exhibit a pronounced G2 checkpoint response following UV damage, Cell Cycle, 15, 908-918, https://doi.org/10.1080/15384101.2015.1128597.

    Article  CAS  PubMed  Google Scholar 

  23. Schiavone, D., Jozwiakowski, S. K., Romanello, M., Guilbaud, G., Guilliam, T. A., et al. (2016) PrimPol Is required for replicative tolerance of g quadruplexes in vertebrate cells, Mol. Cell, 61, 161-169, https://doi.org/10.1016/j.molcel.2015.10.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bailey, L. J., Bianchi, J., and Doherty, A. J. (2019) PrimPol is required for the maintenance of efficient nuclear and mitochondrial DNA replication in human cells, Nucleic Acids Res., 47, 4026-4038, https://doi.org/10.1093/nar/gkz056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Duong, V. N., Zhou, L., Martínez-Jiménez, M. I., He, L., Cosme, M., et al. (2020) Identifying the role of PrimPol in TDF-induced toxicity and implications of its loss of function mutation in an HIV+ patient, Sci. Rep., 10, 9343, https://doi.org/10.1038/s41598-020-66153-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jamieson, E. R., and Lippard, S. J. (1999) Structure, recognition, and processing of cisplatin – DNA adducts, Chem. Rev., 99, 2467-2498, https://doi.org/10.1021/cr980421n.

    Article  CAS  PubMed  Google Scholar 

  27. Natile, G., and Cannito, F. (2009) Platinum drugs, nucleotides and DNA: the role of interligand interactions, in Metal Complex-DNA Interactions, pp. 135-173, https://doi.org/10.1002/9781444312089.ch5.

  28. Hay, J., Shahzeidi, S., and Laurent, G. (1991) Mechanisms of bleomycin-induced lung damage, Arch. Toxicol., 65, 81-94, https://doi.org/10.1007/BF02034932.

    Article  CAS  PubMed  Google Scholar 

  29. Díaz-Talavera, A., Calvo, P. A., González-Acosta, D., Díaz, M., Sastre-Moreno, G., et al. (2019) A cancer-associated point mutation disables the steric gate of human PrimPol, Sci. Rep., 9, 1121, https://doi.org/10.1038/s41598-018-37439-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kang, Z., Fu, P., Alcivar, A. L., Fu, H., Redon, C., et al. (2021) BRCA2 associates with MCM10 to suppress PRIMPOL-mediated repriming and single-stranded gap formation after DNA damage, Nat. Commun., 12, 5966, https://doi.org/10.1038/s41467-021-26227-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pilzecker, B., Buoninfante, O. A., Pritchard, C., Blomberg, O. S., Huijbers, I. J., Van Den Berk, P. C. M., and Jacobs, H. (2016) PrimPol prevents APOBEC/AID family mediated DNA mutagenesis, Nucleic Acids Res., 44, 4734-4744, https://doi.org/10.1093/nar/gkw123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guilliam, T. A., Bailey, L. J., Brissett, N. C., and Doherty, A. J. (2016) PolDIP2 interacts with human PrimPol and enhances its DNA polymerase activities, Nucleic Acids Res., 44, 3317-3329, https://doi.org/10.1093/nar/gkw175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Keen, B. A., Bailey, L. J., Jozwiakowski, S. K., and Doherty, A. J. (2014) Human PrimPol mutation associated with high myopia has a DNA replication defect, Nucleic Acids Res., 42, 12102-12111, https://doi.org/10.1093/nar/gku879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, J., Lee, W., Jiang, Z., Chen, Z., Jhunjhunwala, S., et al. (2012) Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events, Genome Res., 22, 2315-2327, https://doi.org/10.1101/gr.140988.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vaisman, A., Masutani, C., Hanaoka, F., and Chaney, S. G. (2000) Efficient translesion replication past oxaliplatin and cisplatin GpG adducts by human DNA polymerase eta, Biochemistry, 39, 4575-4580, https://doi.org/10.1021/bi000130k.

    Article  CAS  PubMed  Google Scholar 

  36. Shen, M., Qi, R., Ren, J., Lv, D., and Yang, H. (2022) Characterization with KRAS mutant is a critical determinant in immunotherapy and other multiple therapies for non-small cell lung cancer, Front. Oncol., 11, 780655, https://doi.org/10.3389/fonc.2021.780655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoon, Y. K., Kim, H. P., Han, S. W., Oh, D. Y., Im, S. A., et al. (2010) KRAS mutant lung cancer cells are differentially responsive to MEK inhibitor due to AKT or STAT3 activation: Implication for combinatorial approach, Mol. Carcinog., 49, 353-362, https://doi.org/10.1002/mc.20607.

    Article  CAS  PubMed  Google Scholar 

  38. Garassino, M. C., Marabese, M., Rusconi, P., Rulli, E., Martelli, O., et al. (2011) Different types of K-Ras mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer, Ann. Oncol., 22, 235-237, https://doi.org/10.2959/logo.2002.13.2.109.

    Article  CAS  PubMed  Google Scholar 

  39. Shepherd, F. A., Domerg, C., Hainaut, P., Jänne, P. A., Pignon, J. P., et al. (2013) Pooled analysis of the prognostic and predictive effects of KRAS mutation status and KRAS mutation subtype in early-stage resected non-small-cell lung cancer in four trials of adjuvant chemotherapy, J. Clin. Oncol., 31, 2173-2181, https://doi.org/10.1200/JCO.2012.48.1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sarin, N., Engel, F., Kalayda, G. V., Mannewitz, M., Cinatl, J., et al. (2017) Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest, PLoS One, 12, e0181081, https://doi.org/10.1371/journal.pone.0181081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao, Y., Dorn, P., Liu, S., Deng, H., Hall, S. R. R., et al. (2019) Cisplatin-resistant A549 non-small cell lung cancer cells can be identified by increased mitochondrial mass and are sensitive to pemetrexed treatment, Cancer Cell Int., 19, 317, https://doi.org/10.1186/s12935-019-1037-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ray, R., Al Khashali, H., Haddad, B., Wareham, J., Coleman, K. L., et al. (2022) Regulation of cisplatin resistance in lung cancer cells by nicotine, BDNF, and a β-adrenergic receptor blocker, Int. J. Mol. Sci., 23, 12829, https://doi.org/10.3390/ijms232112829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 18-14-00354 for A.V.M.; generation of PRIMPOL–/– cells, analysis of metabolic activity and DNA-replicating cell fractions, cell cycle analysis) and the Russian Foundation for Basic Research (grant no. 20-34-90092-Aspirants for D.V.K.; generation of clonal cell lines), and by the Ministry of Science and Higher Education of the Russian Federation (State Assignment 075-03-2023-106, project no. FSMG-2023-0015 for M.V.P.; cell treatment with ionizing radiation).

Author information

Authors and Affiliations

Authors

Contributions

A.S.G. performing experiments, data analysis, writing the draft; E.O.B. performing experiments, data analysis, writing the draft; D.V.K. planning and performing experiments, funding; R.N.C. planning and performing experiments, S.V.L. correcting the article and funding, M.V.P. planning and performing experiments, data analysis, writing the draft; D.O.Z. planning experiments and correcting the article, A.V.M. planning experiments, data analysis, writing the draft and correcting the article, funding.

Corresponding authors

Correspondence to Dmitry O. Zharkov or Alena V. Makarova.

Ethics declarations

The authors declare no conflict of interest. This article does not contain description of research involving humans or animals as subjects performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromova, A.S., Boldinova, E.O., Kim, D.V. et al. Response of PRIMPOL-Knockout Human Lung Adenocarcinoma A549 Cells to Genotoxic Stress. Biochemistry Moscow 88, 1933–1943 (2023). https://doi.org/10.1134/S0006297923110214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923110214

Keywords

Navigation