Log in

Generation of Membrane Potential by Cytochrome bd

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

An overview of current notions on the mechanism of generation of a transmembrane electric potential difference (Δψ) during the catalytic cycle of a bd-type triheme terminal quinol oxidase is presented in this work. It is suggested that the main contribution to Δψ formation is made by the movement of H+ across the membrane along the intra-protein hydrophilic proton-conducting pathway from the cytoplasm to the active site for oxygen reduction of this bacterial enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

Δψ:

transmembrane electrical potential difference

Δp :

protonmotive force

τ:

time constant, reciprocal of rate constant (t1/e)

H+/e :

proton/electron stoichiometry which in the case of Escherichia coli respiratory chain means number of protons released into the periplasm per electron used to reduce oxygen to water

RuBpy:

tris(2,2′-bipyridyl)ruthenium(II) chloride

References

  1. Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin, A. A., Liberman, E. A., Nemecek, I. B., Ostroumov, S. A., Semenov, A. Y., and Skulachev, V. P. (1974) Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin, Nature, 249, 321-324, https://doi.org/10.1038/249321a0.

    Article  CAS  PubMed  Google Scholar 

  2. Drachev, L. A., Kaulen, A. D., Khitrina, L. V., and Skulachev, V. P. (1981) Fast stages of photoelectric processes in biological membranes. I. Bacteriorhodopsin, Eur. J. Biochem., 117, 461-470, https://doi.org/10.1111/j.1432-1033.1981.tb06361.x.

    Article  CAS  PubMed  Google Scholar 

  3. Dracheva, S. M., Drachev, L. A., Konstantinov, A. A., Semenov, A. Y., Skulachev, V. P., Arutjunjan, A. M., Shulalov, V. A., and Zaberezhnaya, S. M. (1988) Electrogenic steps in the redox reactions catalyzed by photosynthetic reaction-centre complex from Rhodopseudomonas viridis, Eur. J. Biochem., 171, 253-264, https://doi.org/10.1111/j.1432-1033.1988.tb13784.x.

    Article  CAS  PubMed  Google Scholar 

  4. Mulkidjanian, A. Y., Mamedov, M. D., Semenov, A. Y., Shinkarev, V. P., Verkhovsky, M. I., and Drachev, L. A. (1990) Partial reversion of the electrogenic reaction in the ubiquinol: cytochrome c2-oxidoreductase of Rhodobacter sphaeroides chromatophores under neutral and alkaline conditions, FEBS Lett., 277, 127-130, https://doi.org/10.1016/0014-5793(90)80825-4.

    Article  Google Scholar 

  5. Zaslavsky, D., Kaulen, A. D., Smirnova, I. A., Vygodina, T., and Konstantinov, A. A. (1993) Flash-induced membrane potential generation by cytochrome c oxidase, FEBS Lett., 336, 389-393, https://doi.org/10.1016/0014-5793(93)80843-j.

    Article  CAS  PubMed  Google Scholar 

  6. Konstantinov, A. A., Siletsky, S., Mitchell, D., Kaulen, A., and Gennis, R. B. (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer, Proc. Natl. Acad. Sci. USA, 94, 9085-9090, https://doi.org/10.1073/pnas.94.17.9085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Siletsky, S., Kaulen, A. D., and Konstantinov, A. A. (1999) Resolution of electrogenic steps couples to conversion of cytochrome c oxidase from the peroxy to the ferryl-oxo state, Biochemistry, 38, 4853-4861, https://doi.org/10.1021/bi982614a.

    Article  CAS  PubMed  Google Scholar 

  8. Bogachev, A. V., Bertsova, Y. V., Verkhovskaya, M. L., Mamedov, M. D., and Skulachev, V. P. (2016) Real-time kinetics of electrogenic Na+ transport by rhodopsin from the marine flavobacterium Dokdonia sp. PRO95, Sci. Rep., 6, 21397, https://doi.org/10.1038/srep21397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Siletsky, S. A., Lukashev, E. P., Mamedov, M. D., Borisov, V. B., Balashov, S. P., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Petrovskaya, L. E. (2021) His57 controls the efficiency of ESR, a light-driven proton pump from Exiguobacterium sibiricum at low and high pH, Biochim. Biophys. Acta Bioenerg., 1862, 148328, https://doi.org/10.1016/j.bbabio.2020.148328.

    Article  CAS  PubMed  Google Scholar 

  10. Verkhovsky, M. I., Morgan, J. E., Verkhovskaya, M., and Wikstrom, M. (1997) Translocation of electrical charge during a single turnover of cytochrome-c oxidase, Biochim. Biophys. Acta, 1318, 6-10, https://doi.org/10.1016/S0005-2728(96)00147-8.

    Article  CAS  Google Scholar 

  11. Gibson, Q., and Greenwood, C. (1963) Reactions of cytochrome oxidase with oxygen and carbon monoxide, Biochem. J., 86, 541-554, https://doi.org/10.1042/bj0860541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Siletsky, S. A., Borisov, V. B., and Mamedov, M. D. (2017) Photosystem II and terminal respiratory oxidases: molecular machines operating in opposite directions, Front. Biosci. (Landmark Ed.), 22, 1379-1426, https://doi.org/10.2741/4550.

    Article  CAS  PubMed  Google Scholar 

  13. Azarkina, N. V., Borisov, V. B., Oleynikov, I. P., Sudakov, R. V., and Vygodina, T. V. (2023) Interaction of terminal oxidases with amphipathic molecules, Int. J. Mol. Sci., 24, 6428, https://doi.org/10.3390/ijms24076428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zharova, T. V., Grivennikova, V. G., and Borisov, V. B. (2023) F1•Fo ATP Synthase/ATPase: contemporary view on unidirectional catalysis, Int. J. Mol. Sci., 24, 5417, https://doi.org/10.3390/ijms24065417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arutyunyan, A. M., Sakamoto, J., Inadome, M., Kabashima, Y., and Borisov, V. B. (2012) Optical and magneto-optical activity of cytochrome bd from Geobacillus thermodenitrificans, Biochim. Biophys. Acta, 1817, 2087-2094, https://doi.org/10.1016/j.bbabio.2012.06.009.

    Article  CAS  PubMed  Google Scholar 

  16. Borisov, V. B., and Siletsky, S. A. (2019) Features of organization and mechanism of catalysis of two families of terminal oxidases: heme-copper and bd-type, Biochemistry (Moscow), 84, 1390-1402, https://doi.org/10.1134/S0006297919110130.

    Article  CAS  PubMed  Google Scholar 

  17. Murali, R., Gennis, R. B., and Hemp, J. (2021) Evolution of the cytochrome bd oxygen reductase superfamily and the function of CydAA′ in Archaea, ISME J., 15, 3534-3548, https://doi.org/10.1038/s41396-021-01019-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Siletsky, S. A., and Borisov, V. B. (2021) Proton pum** and non-pum** terminal respiratory oxidases: Active sites intermediates of these molecular machines and their derivatives, Int. J. Mol. Sci., 22, 10852, https://doi.org/10.3390/ijms221910852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Forte, E., Borisov, V. B., Vicente, J. B., and Giuffre, A. (2017) Cytochrome bd and gaseous ligands in bacterial physiology, Adv. Microb. Physiol., 71, 171-234, https://doi.org/10.1016/bs.ampbs.2017.05.002.

    Article  CAS  PubMed  Google Scholar 

  20. Borisov, V. B., Gennis, R. B., Hemp, J., and Verkhovsky, M. I. (2011) The cytochrome bd respiratory oxygen reductases, Biochim. Biophys. Acta, 1807, 1398-1413, https://doi.org/10.1016/j.bbabio.2011.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Borisov, V. B., Siletsky, S. A., Paiardini, A., Hoogewijs, D., Forte, E., Giuffre, A., and Poole, R. K. (2021) Bacterial oxidases of the cytochrome bd family: Redox enzymes of unique structure, function and utility as drug targets, Antioxid. Redox Signal., 34, 1280-1318, https://doi.org/10.1089/ars.2020.8039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Friedrich, T., Wohlwend, D., and Borisov, V. B. (2022) Recent advances in structural studies of cytochrome bd and its potential application as a drug target, Int. J. Mol. Sci., 23, 3166, https://doi.org/10.3390/ijms23063166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Borisov, V. B. (1996) Cytochrome bd: structure and properties, Biochemistry (Moscow), 61, 565-574.

    Google Scholar 

  24. Borisov, V. B., and Verkhovsky, M. I. (2015) Oxygen as acceptor, EcoSal Plus, 6, https://doi.org/10.1128/ecosalplus.ESP-0012-2015.

    Article  PubMed  Google Scholar 

  25. Puustinen, A., Finel, M., Haltia, T., Gennis, R. B., and Wikstrom, M. (1991) Properties of the two terminal oxidases of Escherichia coli, Biochemistry, 30, 3936-3942, https://doi.org/10.1021/bi00230a019.

    Article  CAS  PubMed  Google Scholar 

  26. Borisov, V. B., Murali, R., Verkhovskaya, M. L., Bloch, D. A., Han, H., Gennis, R. B., and Verkhovsky, M. I. (2011) Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode, Proc. Natl. Acad. Sci. USA, 108, 17320-17324, https://doi.org/10.1073/pnas.1108217108.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Forte, E., Borisov, V. B., Konstantinov, A. A., Brunori, M., Giuffre, A., and Sarti, P. (2007) Cytochrome bd, a key oxidase in bacterial survival and tolerance to nitrosative stress, Ital. J. Biochem., 56, 265-269.

    PubMed  Google Scholar 

  28. Giuffre, A., Borisov, V. B., Mastronicola, D., Sarti, P., and Forte, E. (2012) Cytochrome bd oxidase and nitric oxide: From reaction mechanisms to bacterial physiology, FEBS Lett., 586, 622-629, https://doi.org/10.1016/j.febslet.2011.07.035.

    Article  CAS  PubMed  Google Scholar 

  29. Giuffre, A., Borisov, V. B., Arese, M., Sarti, P., and Forte, E. (2014) Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress, Biochim. Biophys. Acta, 1837, 1178-1187, https://doi.org/10.1016/j.bbabio.2014.01.016.

    Article  CAS  PubMed  Google Scholar 

  30. Borisov, V. B., Forte, E., Siletsky, S. A., Arese, M., Davletshin, A. I., Sarti, P., and Giuffre, A. (2015) Cytochrome bd protects bacteria against oxidative and nitrosative stress: a potential target for next-generation antimicrobial agents, Biochemistry (Moscow), 80, 565-575, https://doi.org/10.1134/S0006297915050077.

    Article  CAS  PubMed  Google Scholar 

  31. Bader, M., Muse, W., Ballou, D. P., Gassner, C., and Bardwell, J. C. A. (1999) Oxidative protein folding is driven by the electron transport system, Cell, 98, 217-227, https://doi.org/10.1016/S0092-8674(00)81016-8.

    Article  CAS  PubMed  Google Scholar 

  32. Mobius, K., Arias-Cartin, R., Breckau, D., Hannig, A. L., Riedmann, K., Biedendieck, R., Schroder, S., Becher, D., Magalon, A., Moser, J., Jahn, M., and Jahn, D. (2010) Heme biosynthesis is coupled to electron transport chains for energy generation, Proc. Natl. Acad. Sci. USA, 107, 10436-10441, https://doi.org/10.1073/pnas.1000956107.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Seregina, T. A., Lobanov, K. V., Shakulov, R. S., and Mironov, A. S. (2022) Inactivation of terminal oxidase bd-I leads to supersensitivity of E. coli to quinolone and beta-lactam antibiotics, Mol. Biol. (Mosk), 56, 619-627, https://doi.org/10.1134/S0026893322040100.

    Article  CAS  PubMed  Google Scholar 

  34. Borisov, V. B., Forte, E., Siletsky, S. A., Sarti, P., and Giuffre, A. (2015) Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition, Biochim. Biophys. Acta, 1847, 182-188, https://doi.org/10.1016/j.bbabio.2014.10.006.

    Article  CAS  PubMed  Google Scholar 

  35. Borisov, V. B., Forte, E., Konstantinov, A. A., Poole, R. K., Sarti, P., and Giuffre, A. (2004) Interaction of the bacterial terminal oxidase cytochrome bd with nitric oxide, FEBS Lett., 576, 201-204, https://doi.org/10.1016/j.febslet.2004.09.013.

    Article  CAS  PubMed  Google Scholar 

  36. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffre, A. (2006) Nitric oxide reacts with the ferryl-oxo catalytic intermediate of the CuB-lacking cytochrome bd terminal oxidase, FEBS Lett., 580, 4823-4826, https://doi.org/10.1016/j.febslet.2006.07.072.

    Article  CAS  PubMed  Google Scholar 

  37. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffre, A. (2007) Redox control of fast ligand dissociation from Escherichia coli cytochrome bd, Biochem. Biophys. Res. Commun., 355, 97-102, https://doi.org/10.1016/j.bbrc.2007.01.118.

    Article  CAS  PubMed  Google Scholar 

  38. Mason, M. G., Shepherd, M., Nicholls, P., Dobbin, P. S., Dodsworth, K. S., Poole, R. K., and Cooper, C. E. (2009) Cytochrome bd confers nitric oxide resistance to Escherichia coli, Nat. Chem. Biol., 5, 94-96, https://doi.org/10.1038/nchembio.135.

    Article  CAS  PubMed  Google Scholar 

  39. Borisov, V. B., Forte, E., Giuffre, A., Konstantinov, A., and Sarti, P. (2009) Reaction of nitric oxide with the oxidized di-heme and heme-copper oxygen-reducing centers of terminal oxidases: different reaction pathways and end-products, J. Inorg. Biochem., 103, 1185-1187, https://doi.org/10.1016/j.**orgbio.2009.06.002.

    Article  CAS  PubMed  Google Scholar 

  40. Shepherd, M., Achard, M. E., Idris, A., Totsika, M., Phan, M. D., Peters, K. M., Sarkar, S., Ribeiro, C. A., Holyoake, L. V., Ladakis, D., Ulett, G. C., Sweet, M. J., Poole, R. K., McEwan, A. G., and Schembri, M. A. (2016) The cytochrome bd-I respiratory oxidase augments survival of multidrug-resistant Escherichia coli during infection, Sci. Rep., 6, 35285, https://doi.org/10.1038/srep35285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Borisov, V. B., and Forte, E. (2022) Bioenergetics and reactive nitrogen species in bacteria, Int. J. Mol. Sci., 23, 7321, https://doi.org/10.3390/ijms23137321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Forte, E., Siletsky, S. A., and Borisov, V. B. (2021) In Escherichia coli ammonia inhibits cytochrome bo3 but activates cytochrome bd-I, Antioxidants (Basel), 10, 13, https://doi.org/10.3390/antiox10010013.

    Article  CAS  Google Scholar 

  43. Forte, E., Borisov, V. B., Falabella, M., Colaco, H. G., Tinajero-Trejo, M., Poole, R. K., Vicente, J. B., Sarti, P., and Giuffre, A. (2016) The terminal oxidase cytochrome bd promotes sulfide-resistant bacterial respiration and growth, Sci. Rep., 6, 23788, https://doi.org/10.1038/srep23788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Borisov, V. B., and Forte, E. (2021) Terminal oxidase cytochrome bd protects bacteria against hydrogen sulfide toxicity, Biochemistry (Moscow), 86, 22-32, https://doi.org/10.1134/S000629792101003X.

    Article  CAS  PubMed  Google Scholar 

  45. Borisov, V. B., and Forte, E. (2021) Impact of hydrogen sulfide on mitochondrial and bacterial bioenergetics, Int. J. Mol. Sci., 22, 12688, https://doi.org/10.3390/ijms222312688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Borisov, V., Gennis, R., and Konstantinov, A. A. (1995) Peroxide complex of cytochrome bd: kinetics of generation and stability, Biochem. Mol. Biol. Int., 37, 975-982.

    CAS  PubMed  Google Scholar 

  47. Borisov, V. B., Gennis, R. B., and Konstantinov, A. A. (1995) Interaction of cytochrome bd from Escherichia coli with hydrogen peroxide, Biochemistry (Moscow), 60, 231-239.

    Google Scholar 

  48. Lindqvist, A., Membrillo-Hernandez, J., Poole, R. K., and Cook, G. M. (2000) Roles of respiratory oxidases in protecting Escherichia coli K12 from oxidative stress, Antonie Van Leeuwenhoek, 78, 23-31, https://doi.org/10.1023/a:1002779201379.

    Article  CAS  PubMed  Google Scholar 

  49. Borisov, V. B., Davletshin, A. I., and Konstantinov, A. A. (2010) Peroxidase activity of cytochrome bd from Escherichia coli, Biochemistry (Moscow), 75, 428-436, https://doi.org/10.1134/S000629791004005X.

    Article  CAS  PubMed  Google Scholar 

  50. Borisov, V. B., Forte, E., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffre, A. (2013) Cytochrome bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress, FEBS Lett., 587, 2214-2218, https://doi.org/10.1016/j.febslet.2013.05.047.

    Article  CAS  PubMed  Google Scholar 

  51. Forte, E., Borisov, V. B., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffre, A. (2013) Cytochrome bd oxidase and hydrogen peroxide resistance in Mycobacterium tuberculosis, MBio, 4, e01006-01013, https://doi.org/10.1128/mBio.01006-13.

    Article  CAS  Google Scholar 

  52. Al-Attar, S., Yu, Y., Pinkse, M., Hoeser, J., Friedrich, T., Bald, D., and de Vries, S. (2016) Cytochrome bd displays significant quinol peroxidase activity, Sci. Rep., 6, 27631, https://doi.org/10.1038/srep27631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Borisov, V. B., Siletsky, S. A., Nastasi, M. R., and Forte, E. (2021) ROS defense systems and terminal oxidases in bacteria, Antioxidants (Basel), 10, 839, https://doi.org/10.3390/antiox10060839.

    Article  CAS  PubMed  Google Scholar 

  54. Forte, E., Nastasi, M. R., and Borisov, V. B. (2022) Preparations of terminal oxidase cytochrome bd-II isolated from Escherichia coli reveal significant hydrogen peroxide scavenging activity, Biochemistry (Moscow), 87, 720-730, https://doi.org/10.1134/S0006297922080041.

    Article  CAS  PubMed  Google Scholar 

  55. Theßeling, A., Rasmussen, T., Burschel, S., Wohlwend, D., Kagi, J., Muller, R., Bottcher, B., and Friedrich, T. (2019) Homologous bd oxidases share the same architecture but differ in mechanism, Nat. Commun., 10, 5138, https://doi.org/10.1038/s41467-019-13122-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Safarian, S., Hahn, A., Mills, D. J., Radloff, M., Eisinger, M. L., Nikolaev, A., Meier-Credo, J., Melin, F., Miyoshi, H., Gennis, R. B., Sakamoto, J., Langer, J. D., Hellwig, P., Kuhlbrandt, W., and Michel, H. (2019) Active site rearrangement and structural divergence in prokaryotic respiratory oxidases, Science, 366, 100-104, https://doi.org/10.1126/science.aay0967.

    Article  CAS  PubMed  Google Scholar 

  57. Grauel, A., Kagi, J., Rasmussen, T., Makarchuk, I., Oppermann, S., Moumbock, A. F. A., Wohlwend, D., Muller, R., Melin, F., Gunther, S., Hellwig, P., Bottcher, B., and Friedrich, T. (2021) Structure of Escherichia coli cytochrome bd-II type oxidase with bound aurachin D, Nat. Commun., 12, 6498, https://doi.org/10.1038/s41467-021-26835-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Grund, T. N., Radloff, M., Wu, D., Goojani, H. G., Witte, L. F., Josting, W., Buschmann, S., Muller, H., Elamri, I., Welsch, S., Schwalbe, H., Michel, H., Bald, D., and Safarian, S. (2021) Mechanistic and structural diversity between cytochrome bd isoforms of Escherichia coli, Proc. Natl. Acad. Sci. USA, 118, e2114013118, https://doi.org/10.1073/pnas.2114013118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang, K., Borisov, V. B., Konstantinov, A. A., and Gennis, R. B. (2008) The fully oxidized form of the cytochrome bd quinol oxidase from E. coli does not participate in the catalytic cycle: direct evidence from rapid kinetics studies, FEBS Lett., 582, 3705-3709, https://doi.org/10.1016/j.febslet.2008.09.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Borisov, V. B., Forte, E., Sarti, P., and Giuffre, A. (2011) Catalytic intermediates of cytochrome bd terminal oxidase at steady-state: Ferryl and oxy-ferrous species dominate, Biochim. Biophys. Acta, 1807, 503-509, https://doi.org/10.1016/j.bbabio.2011.02.007.

    Article  CAS  PubMed  Google Scholar 

  61. Borisov, V. B., Smirnova, I. A., Krasnosel’skaya, I. A., and Konstantinov, A. A. (1994) Oxygenated cytochrome bd from Escherichia coli can be converted into the oxidized form by lipophilic electron acceptors, Biochemistry (Moscow), 59, 437-443.

    Google Scholar 

  62. D'mello, R., Hill, S., and Poole, R. K. (1996) The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two-oxygen-binding haems: implicaitons for regulation of activity in vivo by oxygen inihibition, Microbiology, 142, 755-763, https://doi.org/10.1099/00221287-142-4-755.

    Article  CAS  PubMed  Google Scholar 

  63. Belevich, I., Borisov, V. B., Konstantinov, A. A., and Verkhovsky, M. I. (2005) Oxygenated complex of cytochrome bd from Escherichia coli: stability and photolability, FEBS Lett., 579, 4567-4570, https://doi.org/10.1016/j.febslet.2005.07.011.

    Article  CAS  PubMed  Google Scholar 

  64. Belevich, I., Borisov, V. B., Bloch, D. A., Konstantinov, A. A., and Verkhovsky, M. I. (2007) Cytochrome bd from Azotobacter vinelandii: evidence for high-affinity oxygen binding, Biochemistry, 46, 11177-11184, https://doi.org/10.1021/bi700862u.

    Article  CAS  PubMed  Google Scholar 

  65. Siletsky, S. A., Zaspa, A. A., Poole, R. K., and Borisov, V. B. (2014) Microsecond time-resolved absorption spectroscopy used to study CO compounds of cytochrome bd from Escherichia coli, PLoS One, 9, e95617, https://doi.org/10.1371/journal.pone.0095617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Siletsky, S. A., Rappaport, F., Poole, R. K., and Borisov, V. B. (2016) Evidence for fast electron transfer between the high-spin haems in cytochrome bd-I from Escherichia coli, PLoS One, 11, e0155186, https://doi.org/10.1371/journal.pone.0155186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hill, J. J., Alben, J. O., and Gennis, R. B. (1993) Spectroscopic evidence for a heme-heme binuclear center in the cytochrome bd ubiquinol oxidase from Escherichia coli, Proc. Natl. Acad. Sci. USA, 90, 5863-5867, https://doi.org/10.1073/pnas.90.12.5863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Muntyan, M. S., Bloch, D. A., Drachev, L. A., and Skulachev, V. P. (1993) Kinetics of CO binding to putative Na+-motive oxidases of the o-type from Bacillus FTU and of the d-type from Escherichia coli, FEBS Lett., 327, 347-350, https://doi.org/10.1016/0014-5793(93)81018-u.

    Article  CAS  PubMed  Google Scholar 

  69. Tsubaki, M., Hori, H., Mogi, T., and Anraku, Y. (1995) Cyanide-binding site of bd-type ubiquinol oxidase from Escherichia coli, J. Biol. Chem., 270, 28565-28569, https://doi.org/10.1074/jbc.270.48.28565.

    Article  CAS  PubMed  Google Scholar 

  70. Borisov, V., Arutyunyan, A. M., Osborne, J. P., Gennis, R. B., and Konstantinov, A. A. (1999) Magnetic circular dichroism used to examine the interaction of Escherichia coli cytochrome bd with ligands, Biochemistry, 38, 740-750, https://doi.org/10.1021/bi981908t.

    Article  CAS  PubMed  Google Scholar 

  71. Vos, M. H., Borisov, V. B., Liebl, U., Martin, J. L., and Konstantinov, A. A. (2000) Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: A di-heme active site? Proc. Natl. Acad. Sci. USA, 97, 1554-1559, https://doi.org/10.1073/pnas.030528197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Borisov, V. B., Sedelnikova, S. E., Poole, R. K., and Konstantinov, A. A. (2001) Interaction of cytochrome bd with carbon monoxide at low and room temperatures: evidence that only a small fraction of heme b595 reacts with CO, J. Biol. Chem., 276, 22095-22099, https://doi.org/10.1074/jbc.M011542200.

    Article  CAS  PubMed  Google Scholar 

  73. Borisov, V. B., Liebl, U., Rappaport, F., Martin, J. L., Zhang, J., Gennis, R. B., Konstantinov, A. A., and Vos, M. H. (2002) Interactions between heme d and heme b595 in quinol oxidase bd from Escherichia coli: a photoselection study using femtosecond spectroscopy, Biochemistry, 41, 1654-1662, https://doi.org/10.1021/bi0158019.

    Article  CAS  PubMed  Google Scholar 

  74. Arutyunyan, A. M., Borisov, V. B., Novoderezhkin, V. I., Ghaim, J., Zhang, J., Gennis, R. B., and Konstantinov, A. A. (2008) Strong excitonic interactions in the oxygen-reducing site of bd-type oxidase: the Fe-to-Fe distance between hemes d and b595 is 10 Å, Biochemistry, 47, 1752-1759, https://doi.org/10.1021/bi701884g.

    Article  CAS  PubMed  Google Scholar 

  75. Borisov, V. B. (2008) Interaction of bd-type quinol oxidase from Escherichia coli and carbon monoxide: heme d binds CO with high affinity, Biochemistry (Moscow), 73, 14-22, https://doi.org/10.1134/S0006297908010021.

    Article  CAS  PubMed  Google Scholar 

  76. Bloch, D. A., Borisov, V. B., Mogi, T., and Verkhovsky, M. I. (2009) Heme/heme redox interaction and resolution of individual optical absorption spectra of the hemes in cytochrome bd from Escherichia coli, Biochim. Biophys. Acta, 1787, 1246-1253, https://doi.org/10.1016/j.bbabio.2009.05.003.

    Article  CAS  PubMed  Google Scholar 

  77. Rappaport, F., Zhang, J., Vos, M. H., Gennis, R. B., and Borisov, V. B. (2010) Heme-heme and heme-ligand interactions in the di-heme oxygen-reducing site of cytochrome bd from Escherichia coli revealed by nanosecond absorption spectroscopy, Biochim. Biophys. Acta, 1797, 1657-1664, https://doi.org/10.1016/j.bbabio.2010.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Borisov, V. B., and Verkhovsky, M. I. (2013) Accommodation of CO in the di-heme active site of cytochrome bd terminal oxidase from Escherichia coli, J. Inorg. Biochem., 118, 65-67, https://doi.org/10.1016/j.**orgbio.2012.09.016.

    Article  CAS  PubMed  Google Scholar 

  79. Siletsky, S. A., Dyuba, A. V., Elkina, D. A., Monakhova, M. V., and Borisov, V. B. (2017) Spectral-kinetic analysis of recombination reaction of heme centers of bd-type quinol oxidase from Escherichia coli with carbon monoxide, Biochemistry (Moscow), 82, 1354-1366, https://doi.org/10.1134/S000629791711013X.

    Article  CAS  PubMed  Google Scholar 

  80. Jasaitis, A., Borisov, V. B., Belevich, N. P., Morgan, J. E., Konstantinov, A. A., and Verkhovsky, M. I. (2000) Electrogenic reactions of cytochrome bd, Biochemistry, 39, 13800-13809, https://doi.org/10.1021/bi001165n.

    Article  CAS  PubMed  Google Scholar 

  81. Belevich, I., Borisov, V. B., Zhang, J., Yang, K., Konstantinov, A. A., Gennis, R. B., and Verkhovsky, M. I. (2005) Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site, Proc. Natl. Acad. Sci. USA, 102, 3657-3662, https://doi.org/10.1073/pnas.0405683102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Belevich, I., Borisov, V. B., and Verkhovsky, M. I. (2007) Discovery of the true peroxy intermediate in the catalytic cycle of terminal oxidases by real-time measurement, J. Biol. Chem., 282, 28514-28519, https://doi.org/10.1074/jbc.M705562200.

    Article  CAS  PubMed  Google Scholar 

  83. Borisov, V. B., Belevich, I., Bloch, D. A., Mogi, T., and Verkhovsky, M. I. (2008) Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme b595/heme d active site, Biochemistry, 47, 7907-7914, https://doi.org/10.1021/bi800435a.

    Article  CAS  PubMed  Google Scholar 

  84. Paulus, A., Rossius, S. G., Dijk, M., and de Vries, S. (2012) Oxoferryl-porphyrin radical catalytic intermediate in cytochrome bd oxidases protects cells from formation of reactive oxygen species, J. Biol. Chem., 287, 8830-8838, https://doi.org/10.1074/jbc.M111.333542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bekker, M., de Vries, S., Ter Beek, A., Hellingwerf, K. J., and de Mattos, M. J. (2009) Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase, J. Bacteriol., 191, 5510-5517, https://doi.org/10.1128/JB.00562-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shepherd, M., Sanguinetti, G., Cook, G. M., and Poole, R. K. (2010) Compensations for diminished terminal oxidase activity in Escherichia coli: cytochrome bd-II-mediated respiration and glutamate metabolism, J. Biol. Chem., 285, 18464-18472, https://doi.org/10.1074/jbc.M110.118448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author would like to express his deepest gratitude to M. I. Verkhovsky (passed away), I. N. Belevich, N. P. Belevich, D. A. Bloch (passed away), and A. Jasaitis for wonderful time spent measuring electrogenic activity of the enigmatic cytochrome bd.

Funding

This work was financially supported by the Russian Science Foundation (project no. 22-24-00045, https://rscf.ru/en/project/22-24-00045/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaliy B. Borisov.

Ethics declarations

The author declares no conflict of interest in financial or any other sphere. This article does not contain any studies involving animals or human participants performed by author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, V.B. Generation of Membrane Potential by Cytochrome bd. Biochemistry Moscow 88, 1504–1512 (2023). https://doi.org/10.1134/S0006297923100073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923100073

Keywords

Navigation