Log in

Preparations of Terminal Oxidase Cytochrome bd-II Isolated from Escherichia coli Reveal Significant Hydrogen Peroxide Scavenging Activity

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cytochrome bd-II is one of the three terminal quinol oxidases of the aerobic respiratory chain of Escherichia coli. Preparations of the detergent-solubilized untagged bd-II oxidase isolated from the bacterium were shown to scavenge hydrogen peroxide (H2O2) with high rate producing molecular oxygen (O2). Addition of H2O2 to the same buffer that does not contain enzyme or contains thermally denatured cytochrome bd-II does not lead to any O2 production. The latter observation rules out involvement of adventitious transition metals bound to the protein. The H2O2-induced O2 production is not susceptible to inhibition by N-ethylmaleimide (the sulfhydryl binding compound), antimycin A (the compound that binds specifically to a quinol binding site), and CO (diatomic gas that binds specifically to the reduced heme d). However, O2 formation is inhibited by cyanide (IC50 = 4.5 ± 0.5 µM) and azide. Addition of H2O2 in the presence of dithiothreitol and ubiquinone-1 does not inactivate cytochrome bd-II and apparently does not affect the O2 reductase activity of the enzyme. The ability of cytochrome bd-II to detoxify H2O2 could play a role in bacterial physiology by conferring resistance to the peroxide-mediated stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

DTT:

dithiothreitol

Q1 :

2,3-dimethoxy-5-methyl-6-(3-methyl-2-butenyl)-1,4-benzoquinone

References

  1. Gavrikova, E. V., Grivennikova, V. G., Borisov, V. B., Cecchini, G., and Vinogradov, A. D. (2009) Assembly of a chimeric respiratory chain from bovine heart submitochondrial particles and cytochrome bd terminal oxidase of Escherichia coli, FEBS Lett., 583, 1287-1291, https://doi.org/10.1016/j.febslet.2009.03.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Poole, R. K., and Cook, G. M. (2000) Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation, Adv. Microb. Physiol., 43, 165-224, https://doi.org/10.1016/S0065-2911(00)43005-5.

    Article  CAS  PubMed  Google Scholar 

  3. Murali, R., Gennis, R. B., and Hemp, J. (2021) Evolution of the cytochrome bd oxygen reductase superfamily and the function of CydAA’ in Archaea, ISME J., 15, 3534-3548, https://doi.org/10.1038/s41396-021-01019-4.

    Article  CAS  PubMed  Google Scholar 

  4. Borisov, V. B. (2002) Defects in mitochondrial respiratory complexes III and IV, and human pathologies, Mol. Aspects Med., 23, 385-412, https://doi.org/10.1016/s0098-2997(02)00013-4.

    Article  CAS  PubMed  Google Scholar 

  5. Borisov, V. B. (2004) Mutations in respiratory chain complexes and human diseases, Ital. J. Biochem., 53, 34-40.

    CAS  PubMed  Google Scholar 

  6. Azarkina, N., Borisov, V., and Konstantinov, A. A. (1997) Spontaneous spectral changes of the reduced cytochrome bd, FEBS Lett., 416, 171-174, https://doi.org/10.1016/S0014-5793(97)01196-4.

    Article  CAS  PubMed  Google Scholar 

  7. Borisov, V. B., and Verkhovsky, M. I. (2015) Oxygen as acceptor, EcoSal Plus, 6, https://doi.org/10.1128/ecosalplus.ESP-0012-2015.

    Article  PubMed  Google Scholar 

  8. Siletsky, S. A., Borisov, V. B., and Mamedov, M. D. (2017) Photosystem II and terminal respiratory oxidases: molecular machines operating in opposite directions, Front. Biosci. (Landmark Ed.), 22, 1379-1426, https://doi.org/10.2741/4550.

    Article  CAS  Google Scholar 

  9. Borisov, V. B., and Siletsky, S. A. (2019) Features of organization and mechanism of catalysis of two families of terminal oxidases: Heme-copper and bd-type, Biochemistry (Moscow), 84, 1390-1402, https://doi.org/10.1134/S0006297919110130.

    Article  CAS  Google Scholar 

  10. Forte, E., Giuffre, A., Huang, L. S., Berry, E. A., and Borisov, V. B. (2020) Nitric oxide does not inhibit but is metabolized by the cytochrome bcc-aa3 supercomplex, Int. J. Mol. Sci., 21, 8521, https://doi.org/10.3390/ijms21228521.

    Article  CAS  PubMed Central  Google Scholar 

  11. Borisov, V. B. (1996) Cytochrome bd: Structure and properties, Biochemistry (Moscow), 61, 565-574.

    Google Scholar 

  12. Borisov, V. B., Gennis, R. B., Hemp, J., and Verkhovsky, M. I. (2011) The cytochrome bd respiratory oxygen reductases, Biochim. Biophys. Acta, 1807, 1398-1413, https://doi.org/10.1016/j.bbabio.2011.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Siletsky, S. A., and Borisov, V. B. (2021) Proton pum** and non-pum** terminal respiratory oxidases: Active sites intermediates of these molecular machines and their derivatives, Int. J. Mol. Sci., 22, 10852, https://doi.org/10.3390/ijms221910852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Puustinen, A., Finel, M., Haltia, T., Gennis, R. B., and Wikstrom, M. (1991) Properties of the two terminal oxidases of Escherichia coli, Biochemistry, 30, 3936-3942, https://doi.org/10.1021/bi00230a019.

    Article  CAS  PubMed  Google Scholar 

  15. Jasaitis, A., Borisov, V. B., Belevich, N. P., Morgan, J. E., Konstantinov, A. A., et al. (2000) Electrogenic reactions of cytochrome bd, Biochemistry, 39, 13800-13809, https://doi.org/10.1021/bi001165n.

    Article  CAS  PubMed  Google Scholar 

  16. Belevich, I., Borisov, V. B., Zhang, J., Yang, K., Konstantinov, A. A., et al. (2005) Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site, Proc. Natl. Acad. Sci. USA, 102, 3657-3662, https://doi.org/10.1073/pnas.0405683102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Belevich, I., Borisov, V. B., and Verkhovsky, M. I. (2007) Discovery of the true peroxy intermediate in the catalytic cycle of terminal oxidases by real-time measurement, J. Biol. Chem., 282, 28514-28519, https://doi.org/10.1074/jbc.M705562200.

    Article  CAS  PubMed  Google Scholar 

  18. Borisov, V. B., Belevich, I., Bloch, D. A., Mogi, T., and Verkhovsky, M. I. (2008) Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme b595/heme d active site, Biochemistry, 47, 7907-7914, https://doi.org/10.1021/bi800435a.

    Article  CAS  PubMed  Google Scholar 

  19. Borisov, V. B., Murali, R., Verkhovskaya, M. L., Bloch, D. A., Han, H., et al. (2011) Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode, Proc. Natl. Acad. Sci. USA, 108, 17320-17324, https://doi.org/10.1073/pnas.1108217108.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Borisov, V. B., Siletsky, S. A., Paiardini, A., Hoogewijs, D., Forte, E., et al. (2021) Bacterial oxidases of the cytochrome bd family: Redox enzymes of unique structure, function and utility as drug targets, Antioxid. Redox Signal., 34, 1280-1318, https://doi.org/10.1089/ars.2020.8039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Forte, E., Borisov, V. B., Vicente, J. B., and Giuffre, A. (2017) Cytochrome bd and gaseous ligands in bacterial physiology, Adv. Microb. Physiol., 71, 171-234, https://doi.org/10.1016/bs.ampbs.2017.05.002.

    Article  CAS  PubMed  Google Scholar 

  22. Borisov, V. B., Smirnova, I. A., Krasnosel’skaya, I. A., and Konstantinov, A. A. (1994) Oxygenated cytochrome bd from Escherichia coli can be converted into the oxidized form by lipophilic electron acceptors, Biochemistry (Moscow), 59, 437-443.

    Google Scholar 

  23. Azarkina, N., Siletsky, S., Borisov, V., von Wachenfeldt, C., Hederstedt, L., et al. (1999) A cytochrome bb′-type quinol oxidase in Bacillus subtilis strain 168, J. Biol. Chem., 274, 32810-32817, https://doi.org/10.1074/jbc.274.46.32810.

    Article  CAS  PubMed  Google Scholar 

  24. Forte, E., Borisov, V. B., Konstantinov, A. A., Brunori, M., Giuffre, A., et al. (2007) Cytochrome bd, a key oxidase in bacterial survival and tolerance to nitrosative stress, Ital. J. Biochem., 56, 265-269.

    PubMed  Google Scholar 

  25. Giuffre, A., Borisov, V. B., Mastronicola, D., Sarti, P., and Forte, E. (2012) Cytochrome bd oxidase and nitric oxide: From reaction mechanisms to bacterial physiology, FEBS Lett., 586, 622-629, https://doi.org/10.1016/j.febslet.2011.07.035.

    Article  CAS  PubMed  Google Scholar 

  26. Giuffre, A., Borisov, V. B., Arese, M., Sarti, P., and Forte, E. (2014) Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress, Biochim. Biophys. Acta, 1837, 1178-1187, https://doi.org/10.1016/j.bbabio.2014.01.016.

    Article  CAS  PubMed  Google Scholar 

  27. Borisov, V. B., Forte, E., Siletsky, S. A., Arese, M., Davletshin, A. I., et al. (2015) Cytochrome bd protects bacteria against oxidative and nitrosative stress: A potential target for next-generation antimicrobial agents, Biochemistry (Moscow), 80, 565-575, https://doi.org/10.1134/S0006297915050077.

    Article  CAS  Google Scholar 

  28. Poole, R. K., and Hill, S. (1997) Respiratory protection of nitrogenase activity in Azotobacter vinelandii – roles of the terminal oxidases, Biosci. Rep., 17, 307-317, https://doi.org/10.1023/A:1027336712748.

    Article  Google Scholar 

  29. Bertsova, Y. V., Demin, O. V., and Bogachev, A. V. (2005) Respiratory protection of nitrogenase complex in Azotobacter vinelandii [in Russian], Usp. Biol. Khim., 45, 205-234.

    CAS  Google Scholar 

  30. Mobius, K., Arias-Cartin, R., Breckau, D., Hannig, A. L., Riedmann, K., et al. (2010) Heme biosynthesis is coupled to electron transport chains for energy generation, Proc. Natl. Acad. Sci. USA, 107, 10436-10441, https://doi.org/10.1073/pnas.1000956107.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bader, M., Muse, W., Ballou, D. P., Gassner, C., and Bardwell, J. C. A. (1999) Oxidative protein folding is driven by the electron transport system, Cell, 98, 217-227, https://doi.org/10.1016/S0092-8674(00)81016-8.

    Article  CAS  PubMed  Google Scholar 

  32. Lu, P., Heineke, M. H., Koul, A., Andries, K., Cook, G. M., et al. (2015) The cytochrome bd-type quinol oxidase is important for survival of Mycobacterium smegmatis under peroxide and antibiotic-induced stress, Sci. Rep., 5, 10333, https://doi.org/10.1038/srep10333.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Borisov, V. B., Forte, E., Siletsky, S. A., Sarti, P., and Giuffre, A. (2015) Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition, Biochim. Biophys. Acta, 1847, 182-188, https://doi.org/10.1016/j.bbabio.2014.10.006.

    Article  CAS  PubMed  Google Scholar 

  34. Borisov, V. B., Forte, E., Konstantinov, A. A., Poole, R. K., Sarti, P., et al. (2004) Interaction of the bacterial terminal oxidase cytochrome bd with nitric oxide, FEBS Lett., 576, 201-204, https://doi.org/10.1016/j.febslet.2004.09.013.

    Article  CAS  PubMed  Google Scholar 

  35. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., et al. (2006) Nitric oxide reacts with the ferryl-oxo catalytic intermediate of the CuB-lacking cytochrome bd terminal oxidase, FEBS Lett., 580, 4823-4826, https://doi.org/10.1016/j.febslet.2006.07.072.

    Article  CAS  PubMed  Google Scholar 

  36. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., et al. (2007) Redox control of fast ligand dissociation from Escherichia coli cytochrome bd, Biochem. Biophys. Res. Commun., 355, 97-102, https://doi.org/10.1016/j.bbrc.2007.01.118.

    Article  CAS  PubMed  Google Scholar 

  37. Mason, M. G., Shepherd, M., Nicholls, P., Dobbin, P. S., Dodsworth, K. S., et al. (2009) Cytochrome bd confers nitric oxide resistance to Escherichia coli, Nat. Chem. Biol., 5, 94-96, https://doi.org/10.1038/nchembio.135.

    Article  CAS  PubMed  Google Scholar 

  38. Borisov, V. B., Forte, E., Giuffre, A., Konstantinov, A., and Sarti, P. (2009) Reaction of nitric oxide with the oxidized di-heme and heme-copper oxygen-reducing centers of terminal oxidases: Different reaction pathways and end-products, J. Inorg. Biochem., 103, 1185-1187, https://doi.org/10.1016/j.**orgbio.2009.06.002.

    Article  CAS  PubMed  Google Scholar 

  39. Shepherd, M., Achard, M. E., Idris, A., Totsika, M., Phan, M. D., et al. (2016) The cytochrome bd-I respiratory oxidase augments survival of multidrug-resistant Escherichia coli during infection, Sci. Rep., 6, 35285, https://doi.org/10.1038/srep35285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Holyoake, L. V., Hunt, S., Sanguinetti, G., Cook, G. M., Howard, M. J., et al. (2016) CydDC-mediated reductant export in Escherichia coli controls the transcriptional wiring of energy metabolism and combats nitrosative stress, Biochem. J., 473, 693-701, https://doi.org/10.1042/BJ20150536.

    Article  CAS  PubMed  Google Scholar 

  41. Jones-Carson, J., Husain, M., Liu, L., Orlicky, D. J., and Vazquez-Torres, A. (2016) Cytochrome bd-dependent bioenergetics and antinitrosative defenses in Salmonella pathogenesis, MBio, 7, e02052-02016, https://doi.org/10.1128/mBio.02052-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meng, Q., Yin, J., **, M., and Gao, H. (2018) Distinct nitrite and nitric oxide physiologies in Escherichia coli and Shewanella oneidensis, Appl. Environ. Microbiol., 84, e00559-00518, https://doi.org/10.1128/AEM.00559-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beebout, C. J., Eberly, A. R., Werby, S. H., Reasoner, S. A., Brannon, J. R., et al. (2019) Respiratory heterogeneity shapes biofilm formation and host colonization in uropathogenic Escherichia coli, MBio, 10, e02400-18, https://doi.org/10.1128/mBio.02400-18.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Forte, E., Borisov, V. B., Falabella, M., Colaco, H. G., Tinajero-Trejo, M., et al. (2016) The terminal oxidase cytochrome bd promotes sulfide-resistant bacterial respiration and growth, Sci. Rep., 6, 23788, https://doi.org/10.1038/srep23788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Korshunov, S., Imlay, K. R., and Imlay, J. A. (2016) The cytochrome bd oxidase of Escherichia coli prevents respiratory inhibition by endogenous and exogenous hydrogen sulfide, Mol. Microbiol., 101, 62-77, https://doi.org/10.1111/mmi.13372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Forte, E., and Giuffre, A. (2016) How bacteria breathe in hydrogen sulphide-rich environments, The Biochemist, 38, 8-11, https://doi.org/10.1042/BIO03805008.

    Article  CAS  Google Scholar 

  47. Borisov, V. B., and Forte, E. (2021) Terminal oxidase cytochrome bd protects bacteria against hydrogen sulfide toxicity, Biochemistry (Moscow), 86, 22-32, https://doi.org/10.1134/S000629792101003X.

    Article  CAS  Google Scholar 

  48. Borisov, V. B., and Forte, E. (2021) Impact of hydrogen sulfide on mitochondrial and bacterial bioenergetics, Int. J. Mol. Sci., 22, 12688, https://doi.org/10.3390/ijms222312688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Forte, E., Siletsky, S. A., and Borisov, V. B. (2021) In Escherichia coli ammonia inhibits cytochrome bo3 but activates cytochrome bd-I, Antioxidants (Basel), 10, 13, https://doi.org/10.3390/antiox10010013.

    Article  CAS  Google Scholar 

  50. Borisov, V., Gennis, R., and Konstantinov, A. A. (1995) Peroxide complex of cytochrome bd: kinetics of generation and stability, Biochem. Mol. Biol. Int., 37, 975-982.

    CAS  PubMed  Google Scholar 

  51. Borisov, V. B., Gennis, R. B., and Konstantinov, A. A. (1995) Interaction of cytochrome bd from Escherichia coli with hydrogen peroxide, Biochemistry (Moscow), 60, 231-239.

    Google Scholar 

  52. Lindqvist, A., Membrillo-Hernandez, J., Poole, R. K., and Cook, G. M. (2000) Roles of respiratory oxidases in protecting Escherichia coli K12 from oxidative stress, Antonie Van Leeuwenhoek, 78, 23-31, https://doi.org/10.1023/a:1002779201379.

    Article  CAS  PubMed  Google Scholar 

  53. Korshunov, S., and Imlay, J. A. (2010) Two sources of endogenous hydrogen peroxide in Escherichia coli, Mol. Microbiol., 75, 1389-1401, https://doi.org/10.1111/j.1365-2958.2010.07059.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Borisov, V. B., Davletshin, A. I., and Konstantinov, A. A. (2010) Peroxidase activity of cytochrome bd from Escherichia coli, Biochemistry (Moscow), 75, 428-436, https://doi.org/10.1134/S000629791004005X.

    Article  CAS  Google Scholar 

  55. Borisov, V. B., Forte, E., Davletshin, A., Mastronicola, D., Sarti, P., et al. (2013) Cytochrome bd oxidase from Escherichia coli displays high catalase activity: An additional defense against oxidative stress, FEBS Lett., 587, 2214-2218, https://doi.org/10.1016/j.febslet.2013.05.047.

    Article  CAS  PubMed  Google Scholar 

  56. Forte, E., Borisov, V. B., Davletshin, A., Mastronicola, D., Sarti, P., et al. (2013) Cytochrome bd oxidase and hydrogen peroxide resistance in Mycobacterium tuberculosis, MBio, 4, e01006-01013, https://doi.org/10.1128/mBio.01006-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Al-Attar, S., Yu, Y., Pinkse, M., Hoeser, J., Friedrich, T., et al. (2016) Cytochrome bd displays significant quinol peroxidase activity, Sci. Rep., 6, 27631, https://doi.org/10.1038/srep27631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Borisov, V. B., Siletsky, S. A., Nastasi, M. R., and Forte, E. (2021) ROS defense systems and terminal oxidases in bacteria, Antioxidants (Basel), 10, 839, https://doi.org/10.3390/antiox10060839.

    Article  CAS  Google Scholar 

  59. Safarian, S., Rajendran, C., Muller, H., Preu, J., Langer, J. D., et al. (2016) Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases, Science, 352, 583-586, https://doi.org/10.1126/science.aaf2477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thesseling, A., Rasmussen, T., Burschel, S., Wohlwend, D., Kagi, J., et al. (2019) Homologous bd oxidases share the same architecture but differ in mechanism, Nat. Commun., 10, 5138, https://doi.org/10.1038/s41467-019-13122-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Safarian, S., Hahn, A., Mills, D. J., Radloff, M., Eisinger, M. L., et al. (2019) Active site rearrangement and structural divergence in prokaryotic respiratory oxidases, Science, 366, 100-104, https://doi.org/10.1126/science.aay0967.

    Article  CAS  PubMed  Google Scholar 

  62. Wang, W., Gao, Y., Tang, Y., Zhou, X., Lai, Y., et al. (2021) Cryo-EM structure of mycobacterial cytochrome bd reveals two oxygen access channels, Nat. Commun., 12, 4621, https://doi.org/10.1038/s41467-021-24924-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Safarian, S., Opel-Reading, H. K., Wu, D., Mehdipour, A. R., Hards, K., et al. (2021) The cryo-EM structure of the bd oxidase from M. tuberculosis reveals a unique structural framework and enables rational drug design to combat TB, Nat. Commun., 12, 5236, https://doi.org/10.1038/s41467-021-25537-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grauel, A., Kagi, J., Rasmussen, T., Makarchuk, I., Oppermann, S., et al. (2021) Structure of Escherichia coli cytochrome bd-II type oxidase with bound aurachin D, Nat. Commun., 12, 6498, https://doi.org/10.1038/s41467-021-26835-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Grund, T. N., Radloff, M., Wu, D., Goojani, H. G., Witte, L. F., et al. (2021) Mechanistic and structural diversity between cytochrome bd isoforms of Escherichia coli, Proc. Natl. Acad. Sci. USA, 118, e2114013118, https://doi.org/10.1073/pnas.2114013118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Friedrich, T., Wohlwend, D., and Borisov, V. B. (2022) Recent advances in structural studies of cytochrome bd and its potential application as a drug target, Int. J. Mol. Sci., 23, 3166, https://doi.org/10.3390/ijms23063166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang, K., Borisov, V. B., Konstantinov, A. A., and Gennis, R. B. (2008) The fully oxidized form of the cytochrome bd quinol oxidase from E. coli does not participate in the catalytic cycle: Direct evidence from rapid kinetics studies, FEBS Lett., 582, 3705-3709, https://doi.org/10.1016/j.febslet.2008.09.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Borisov, V. B., Forte, E., Sarti, P., and Giuffre, A. (2011) Catalytic intermediates of cytochrome bd terminal oxidase at steady-state: Ferryl and oxy-ferrous species dominate, Biochim. Biophys. Acta, 1807, 503-509, https://doi.org/10.1016/j.bbabio.2011.02.007.

    Article  CAS  PubMed  Google Scholar 

  69. Paulus, A., Rossius, S. G., Dijk, M., and de Vries, S. (2012) Oxoferryl-porphyrin radical catalytic intermediate in cytochrome bd oxidases protects cells from formation of reactive oxygen species, J. Biol. Chem., 287, 8830-8838, https://doi.org/10.1074/jbc.M111.333542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. D’mello, R., Hill, S., and Poole, R. K. (1996) The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two-oxygen-binding haems: Implications for regulation of activity in vivo by oxygen inhibition, Microbiology, 142, 755-763, https://doi.org/10.1099/00221287-142-4-755.

    Article  PubMed  Google Scholar 

  71. Belevich, I., Borisov, V. B., Konstantinov, A. A., and Verkhovsky, M. I. (2005) Oxygenated complex of cytochrome bd from Escherichia coli: Stability and photolability, FEBS Lett., 579, 4567-4570, https://doi.org/10.1016/j.febslet.2005.07.011.

    Article  CAS  PubMed  Google Scholar 

  72. Belevich, I., Borisov, V. B., Bloch, D. A., Konstantinov, A. A., and Verkhovsky, M. I. (2007) Cytochrome bd from Azotobacter vinelandii: evidence for high-affinity oxygen binding, Biochemistry, 46, 11177-11184, https://doi.org/10.1021/bi700862u.

    Article  CAS  PubMed  Google Scholar 

  73. Siletsky, S. A., Rappaport, F., Poole, R. K., and Borisov, V. B. (2016) Evidence for fast electron transfer between the high-spin haems in cytochrome bd-I from Escherichia coli, PLoS One, 11, e0155186, https://doi.org/10.1371/journal.pone.0155186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hill, J. J., Alben, J. O., and Gennis, R. B. (1993) Spectroscopic evidence for a heme-heme binuclear center in the cytochrome bd ubiquinol oxidase from Escherichia coli, Proc. Natl. Acad. Sci. USA, 90, 5863-5867, https://doi.org/10.1073/pnas.90.12.5863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Muntyan, M. S., Bloch, D. A., Drachev, L. A., and Skulachev, V. P. (1993) Kinetics of CO binding to putative Na+-motive oxidases of the o-type from Bacillus FTU and of the d-type from Escherichia coli, FEBS Lett., 327, 347-350, https://doi.org/10.1016/0014-5793(93)81018-u.

    Article  CAS  PubMed  Google Scholar 

  76. Tsubaki, M., Hori, H., Mogi, T., and Anraku, Y. (1995) Cyanide-binding site of bd-type ubiquinol oxidase from Escherichia coli, J. Biol. Chem., 270, 28565-28569, https://doi.org/10.1074/jbc.270.48.28565.

    Article  CAS  PubMed  Google Scholar 

  77. Borisov, V., Arutyunyan, A. M., Osborne, J. P., Gennis, R. B., and Konstantinov, A. A. (1999) Magnetic circular dichroism used to examine the interaction of Escherichia coli cytochrome bd with ligands, Biochemistry, 38, 740-750, https://doi.org/10.1021/bi981908t.

    Article  CAS  PubMed  Google Scholar 

  78. Vos, M. H., Borisov, V. B., Liebl, U., Martin, J. L., and Konstantinov, A. A. (2000) Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: A di-heme active site? Proc. Natl. Acad. Sci. USA, 97, 1554-1559, https://doi.org/10.1073/pnas.030528197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Borisov, V. B., Sedelnikova, S. E., Poole, R. K., and Konstantinov, A. A. (2001) Interaction of cytochrome bd with carbon monoxide at low and room temperatures: Evidence that only a small fraction of heme b595 reacts with CO, J. Biol. Chem., 276, 22095-22099, https://doi.org/10.1074/jbc.M011542200.

    Article  CAS  PubMed  Google Scholar 

  80. Borisov, V. B., Liebl, U., Rappaport, F., Martin, J. L., Zhang, J., et al. (2002) Interactions between heme d and heme b595 in quinol oxidase bd from Escherichia coli: A photoselection study using femtosecond spectroscopy, Biochemistry, 41, 1654-1662, https://doi.org/10.1021/bi0158019.

    Article  CAS  PubMed  Google Scholar 

  81. Arutyunyan, A. M., Borisov, V. B., Novoderezhkin, V. I., Ghaim, J., Zhang, J., et al. (2008) Strong excitonic interactions in the oxygen-reducing site of bd-type oxidase: The Fe-to-Fe distance between hemes d and b595 is 10 A, Biochemistry, 47, 1752-1759, https://doi.org/10.1021/bi701884g.

    Article  CAS  PubMed  Google Scholar 

  82. Borisov, V. B. (2008) Interaction of bd-type quinol oxidase from Escherichia coli and carbon monoxide: Heme d binds CO with high affinity, Biochemistry (Moscow), 73, 14-22, https://doi.org/10.1134/S0006297908010021.

    Article  CAS  Google Scholar 

  83. Bloch, D. A., Borisov, V. B., Mogi, T., and Verkhovsky, M. I. (2009) Heme/heme redox interaction and resolution of individual optical absorption spectra of the hemes in cytochrome bd from Escherichia coli, Biochim. Biophys. Acta, 1787, 1246-1253, https://doi.org/10.1016/j.bbabio.2009.05.003.

    Article  CAS  PubMed  Google Scholar 

  84. Rappaport, F., Zhang, J., Vos, M. H., Gennis, R. B., and Borisov, V. B. (2010) Heme-heme and heme-ligand interactions in the di-heme oxygen-reducing site of cytochrome bd from Escherichia coli revealed by nanosecond absorption spectroscopy, Biochim. Biophys. Acta, 1797, 1657-1664, https://doi.org/10.1016/j.bbabio.2010.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Arutyunyan, A. M., Sakamoto, J., Inadome, M., Kabashima, Y., and Borisov, V. B. (2012) Optical and magneto-optical activity of cytochrome bd from Geobacillus thermodenitrificans, Biochim. Biophys. Acta, 1817, 2087-2094, https://doi.org/10.1016/j.bbabio.2012.06.009.

    Article  CAS  PubMed  Google Scholar 

  86. Borisov, V. B., and Verkhovsky, M. I. (2013) Accommodation of CO in the di-heme active site of cytochrome bd terminal oxidase from Escherichia coli, J. Inorg. Biochem., 118, 65-67, https://doi.org/10.1016/j.**orgbio.2012.09.016.

    Article  CAS  PubMed  Google Scholar 

  87. Siletsky, S. A., Zaspa, A. A., Poole, R. K., and Borisov, V. B. (2014) Microsecond time-resolved absorption spectroscopy used to study CO compounds of cytochrome bd from Escherichia coli, PLoS One, 9, e95617, https://doi.org/10.1371/journal.pone.0095617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Siletsky, S. A., Dyuba, A. V., Elkina, D. A., Monakhova, M. V., and Borisov, V. B. (2017) Spectral-kinetic analysis of recombination reaction of heme centers of bd-type quinol oxidase from Escherichia coli with carbon monoxide, Biochemistry-Moscow, 82, 1354-1366, https://doi.org/10.1134/S000629791711013X.

    Article  CAS  PubMed  Google Scholar 

  89. Bekker, M., de Vries, S., Ter Beek, A., Hellingwerf, K. J., and de Mattos, M. J. (2009) Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase, J. Bacteriol., 191, 5510-5517, https://doi.org/10.1128/JB.00562-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shepherd, M., Sanguinetti, G., Cook, G. M., and Poole, R. K. (2010) Compensations for diminished terminal oxidase activity in Escherichia coli: cytochrome bd-II-mediated respiration and glutamate metabolism, J. Biol. Chem., 285, 18464-18472, https://doi.org/10.1074/jbc.M110.118448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rivera-Chavez, F., Zhang, L. F., Faber, F., Lopez, C. A., Byndloss, M. X., et al. (2016) Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella, Cell Host Microbe, 19, 443-454, https://doi.org/10.1016/j.chom.2016.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chanin, R. B., Winter, M. G., Spiga, L., Hughes, E. R., Zhu, W., et al. (2020) Epithelial-derived reactive oxygen species enable AppBCX-mediated aerobic respiration of Escherichia coli during intestinal inflammation, Cell Host Microbe, 28, 780-788.e785, https://doi.org/10.1016/j.chom.2020.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Miller, M. J., and Gennis, R. B. (1986) Purification and reconstitution of the cytochrome d terminal oxidase complex from Escherichia coli, Methods Enzymol., 126, 87-94, https://doi.org/10.1016/s0076-6879(86)26011-5.

    Article  CAS  PubMed  Google Scholar 

  94. Goutelle, S., Maurin, M., Rougier, F., Barbaut, X., Bourguignon, L., et al. (2008) The Hill equation: A review of its capabilities in pharmacological modelling, Fundam. Clin. Pharmacol., 22, 633-648, https://doi.org/10.1111/j.1472-8206.2008.00633.x.

    Article  CAS  PubMed  Google Scholar 

  95. Forte, E., Borisov, V. B., Siletsky, S. A., Petrosino, M., and Giuffre, A. (2019) In the respiratory chain of Escherichia coli cytochromes bd-I and bd-II are more sensitive to carbon monoxide inhibition than cytochrome bo3, Biochim. Biophys. Acta Bioenerg., 1860, 148088, https://doi.org/10.1016/j.bbabio.2019.148088.

    Article  CAS  PubMed  Google Scholar 

  96. Sturr, M. G., Krulwich, T. A., and Hicks, D. B. (1996) Purification of a cytochrome bd terminal oxidase encoded by the Escherichia coli app locus from a Δcyo Δcyd strain complemented by genes from Bacillus firmus OF4, J. Bacteriol., 178, 1742-1749, https://doi.org/10.1128/jb.178.6.1742-1749.1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Borisov, V. B. (2020) Effect of membrane environment on ligand-binding properties of the terminal oxidase cytochrome bd-I from Escherichia coli, Biochemistry (Moscow), 85, 1603-1612, https://doi.org/10.1134/S0006297920120123.

    Article  CAS  Google Scholar 

  98. Deisseroth, A., and Dounce, A. L. (1970) Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role, Physiol. Rev., 50, 319-375, https://doi.org/10.1152/physrev.1970.50.3.319.

    Article  CAS  PubMed  Google Scholar 

  99. Su, S., Panmanee, W., Wilson, J. J., Mahtani, H. K., Li, Q., et al. (2014) Catalase (KatA) plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa, PLoS One, 9, e91813, https://doi.org/10.1371/journal.pone.0091813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Brown, G. C. (1995) Reversible binding and inhibition of catalase by nitric oxide, Eur. J. Biochem., 232, 188-191, https://doi.org/10.1111/j.1432-1033.1995.tb20798.x.

    Article  CAS  PubMed  Google Scholar 

  101. Lu, H., Li, Z., and Hu, N. (2003) Direct voltammetry and electrocatalytic properties of catalase incorporated in polyacrylamide hydrogel films, Biophys. Chem., 104, 623-632, https://doi.org/10.1016/S0301-4622(03)00121-2.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to M. Bekker (University of Amsterdam, Amsterdam, The Netherlands) for providing the strain of E. coli MB37 and to R. B. Gennis (University of Illinois, Urbana, Illinois, USA) for the strain of E. coli GO105/pTK1. V. B. Borisov would also like to express his deepest gratitude to A. D. Vinogradov (untimely departed), the author’s teacher from the student bench to the defense of the doctoral dissertation.

Funding

This work was supported by the Russian Science Foundation (project no. 22-24-00045, https://rscf.ru/en/project/22-24-00045/).

Author information

Authors and Affiliations

Authors

Contributions

E.F. and V.B.B. conceived the study, designed the experimental plan and wrote the paper. E.F., M.R.N., and V.B.B. performed and analyzed the experiments. All authors reviewed the results, contributed to data interpretation and critical revision of the manuscript, and approved the final version of the manuscript.

Corresponding author

Correspondence to Vitaliy B. Borisov.

Ethics declarations

The authors declare no conflicts of interests in financial or any other sphere. This article does not contain any studies with human participants or animal performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forte, E., Nastasi, M.R. & Borisov, V.B. Preparations of Terminal Oxidase Cytochrome bd-II Isolated from Escherichia coli Reveal Significant Hydrogen Peroxide Scavenging Activity. Biochemistry Moscow 87, 720–730 (2022). https://doi.org/10.1134/S0006297922080041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922080041

Keywords

Navigation