Log in

Terminal Oxidase Cytochrome bd Protects Bacteria Against Hydrogen Sulfide Toxicity

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Hydrogen sulfide (H2S) is often called the third gasotransmitter (after nitric oxide and carbon monoxide), or endogenous gaseous signaling molecule. This compound plays important roles in organisms from different taxonomic groups, from bacteria to animals and humans. In mammalian cells, H2S has a cytoprotective effect at nanomolar concentrations, but becomes cytotoxic at higher concentrations. The primary target of H2S is mitochondria. At submicromolar concentrations, H2S inhibits mitochondrial heme-copper cytochrome c oxidase, thereby blocking aerobic respiration and oxidative phosphorylation and eventually leading to cell death. Since the concentration of H2S in the gut is extremely high, the question arises – how can gut bacteria maintain the functioning of their oxygen-dependent respiratory electron transport chains under such conditions? This review provides an answer to this question and discusses the key role of non-canonical bd-type terminal oxidases of the enterobacterium Escherichia coli, a component of the gut microbiota, in maintaining aerobic respiration and growth in the presence of toxic concentrations of H2S in the light of recent experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

3-MST:

3-mercaptopyruvate sulfurtransferase

CBS:

cystathionine β-synthase

CSE:

cystathionine γ-lyase

DTT:

dithiothreitol

EhOASS:

O-acetylserine sulfhydrylase from Entamoeba histolytica

OASS:

O-acetylserine sulfhydrylase

Q1 :

2,3-dimethoxy-5-methyl-6-(3-methyl-2-butenyl)-1,4-benzoquinone

References

  1. Cuevasanta, E., Denicola, A., Alvarez, B., and Moller, M. N. (2012) Solubility and permeation of hydrogen sulfide in lipid membranes, PLoS One, 7, e34562, doi: https://doi.org/10.1371/journal.pone.0034562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Forte, E., and Giuffrè, A. (2016) How bacteria breathe in hydrogen sulphide-rich environments, Biochem. J., 38, 8-11, doi: https://doi.org/10.1042/BIO03805008.

    Article  CAS  Google Scholar 

  3. Li, Q., and Lancaster, J. R., Jr. (2013) Chemical foundations of hydrogen sulfide biology, Nitric Oxide, 35, 21-34, doi: https://doi.org/10.1016/j.niox.2013.07.001.

    Article  CAS  PubMed  Google Scholar 

  4. Murphy, B., Bhattacharya, R., and Mukherjee, P. (2019) Hydrogen sulfide signaling in mitochondria and disease, FASEB J., 33, 13098-13125, doi: https://doi.org/10.1096/fj.201901304R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Powell, C. R., Dillon, K. M., and Matson, J. B. (2018) A review of hydrogen sulfide (H2S) donors: chemistry and potential therapeutic applications, Biochem. Pharmacol., 149, 110-123, doi: https://doi.org/10.1016/j.bcp.2017.11.014.

    Article  CAS  PubMed  Google Scholar 

  6. Yang, J., Minkler, P., Grove, D., Wang, R., Willard, B., et al. (2019) Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B6, Commun. Biol., 2, 194, doi: https://doi.org/10.1038/s42003-019-0431-5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kabil, O., and Banerjee, R. (2014) Enzymology of H2S biogenesis, decay and signaling, Antioxid. Redox Signal., 20, 770-782, doi: https://doi.org/10.1089/ars.2013.5339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shibuya, N., Koike, S., Tanaka, M., Ishigami-Yuasa, M., Kimura, Y., et al. (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells, Nat. Commun., 4, 1366, doi: https://doi.org/10.1038/ncomms2371.

    Article  CAS  PubMed  Google Scholar 

  9. Filipovic, M. R., Zivanovic, J., Alvarez, B., and Banerjee, R. (2018) Chemical biology of H2S signaling through persulfidation, Chem. Rev., 118, 1253-1337, doi: https://doi.org/10.1021/acs.chemrev.7b00205.

    Article  CAS  PubMed  Google Scholar 

  10. Nicholls, P., Marshall, D. C., Cooper, C. E., and Wilson, M. T. (2013) Sulfide inhibition of and metabolism by cytochrome c oxidase, Biochem. Soc. Trans., 41, 1312-1316, doi: https://doi.org/10.1042/BST20130070.

    Article  CAS  PubMed  Google Scholar 

  11. Szabo, C., Ransy, C., Modis, K., Andriamihaja, M., Murghes, B., et al. (2014) Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms, Br. J. Pharmacol., 171, 2099-2122, doi: https://doi.org/10.1111/bph.12369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Corpas, F. J., and Palma, J. M. (2020) H2S signaling in plants and applications in agriculture, J. Adv. Res., 24, 131-137, doi: https://doi.org/10.1016/j.jare.2020.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carbonero, F., Benefiel, A. C., Alizadeh-Ghamsari, A. H., and Gaskins, H. R. (2012) Microbial pathways in colonic sulfur metabolism and links with health and disease, Front. Physiol., 3, 448, doi: https://doi.org/10.3389/fphys.2012.00448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shatalin, K., Shatalina, E., Mironov, A., and Nudler, E. (2011) H2S: a universal defense against antibiotics in bacteria, Science, 334, 986-990, doi: https://doi.org/10.1126/science.1209855.

    Article  CAS  PubMed  Google Scholar 

  15. Kimura, H. (2014) Production and physiological effects of hydrogen sulfide, Antioxid. Redox Signal., 20, 783-793, doi: https://doi.org/10.1089/ars.2013.5309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Furne, J., Saeed, A., and Levitt, M. D. (2008) Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values, Am. J. Physiol. Regul. Integr. Comp. Physiol., 295, R1479-R1485, doi: https://doi.org/10.1152/ajpregu.90566.2008.

    Article  CAS  PubMed  Google Scholar 

  17. Sender, R., Fuchs, S., and Milo, R. (2016) Revised estimates for the number of human and bacteria cells in the body, PLoS Biol., 14, e1002533, doi: https://doi.org/10.1371/journal.pbio.1002533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hugon, P., Dufour, J. C., Colson, P., Fournier, P. E., Sallah, K., and Raoult, D. (2015) A comprehensive repertoire of prokaryotic species identified in human beings, Lancet Infect. Dis., 15, 1211-1219, doi: https://doi.org/10.1016/S1473-3099(15)00293-5.

    Article  PubMed  Google Scholar 

  19. Deplancke, B., Finster, K., Graham, W. V., Collier, C. T., Thurmond, J. E., and Gaskins, H. R. (2003) Gastrointestinal and microbial responses to sulfate-supplemented drinking water in mice, Exp. Biol. Med. (Maywood), 228, 424-433, doi: https://doi.org/10.1177/153537020322800413.

    Article  CAS  Google Scholar 

  20. Attene-Ramos, M. S., Wagner, E. D., Gaskins, H. R., and Plewa, M. J. (2007) Hydrogen sulfide induces direct radical-associated DNA damage, Mol. Cancer Res., 5, 455-459, doi: https://doi.org/10.1158/1541-7786.MCR-06-0439.

    Article  CAS  PubMed  Google Scholar 

  21. Levitt, M. D., Springfield, J., Furne, J., Koenig, T., and Suarez, F. L. (2002) Physiology of sulfide in the rat colon: use of bismuth to assess colonic sulfide production, J. Appl. Physiol., 92, 1655-1660, doi: https://doi.org/10.1152/japplphysiol.00907.2001.

    Article  CAS  PubMed  Google Scholar 

  22. Suarez, F., Furne, J., Springfield, J., and Levitt, M. (1998) Production and elimination of sulfur-containing gases in the rat colon, Am. J. Physiol., 274, G727-G733, doi: https://doi.org/10.1152/ajpgi.1998.274.4.G727.

    Article  CAS  PubMed  Google Scholar 

  23. Jorgensen, J., and Mortensen, P. B. (2001) Hydrogen sulfide and colonic epithelial metabolism: implications for ulcerative colitis, Dig. Dis. Sci., 46, 1722-1732, doi: https://doi.org/10.1023/A:1010661706385.

    Article  CAS  PubMed  Google Scholar 

  24. Hill, B. C., Woon, T. C., Nicholls, P., Peterson, J., Greenwood, C., and Thomson, A. J. (1984) Interactions of sulphide and other ligands with cytochrome c oxidase. An electron-paramagnetic-resonance study, Biochem. J., 224, 591-600, doi: https://doi.org/10.1042/bj2240591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Forte, E., Borisov, V. B., Falabella, M., Colaco, H. G., Tinajero-Trejo, M., Poole, R. K., et al. (2016) The terminal oxidase cytochrome bd promotes sulfide-resistant bacterial respiration and growth, Sci. Rep., 6, 23788, doi: https://doi.org/10.1038/srep23788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karami, N., Nowrouzian, F., Adlerberth, I., and Wold, A. E. (2006) Tetracycline resistance in Escherichia coli and persistence in the infantile colonic microbiota, Antimicrob. Agents Chemother., 50, 156-161, doi: https://doi.org/10.1128/AAC.50.1.156-161.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Borisov, V. B., Siletsky, S. A., Paiardini, A., Hoogewijs, D., Forte, E., et al. (2020) Bacterial oxidases of the cytochrome bd family: redox enzymes of unique structure, function and utility as drug targets, Antioxid. Redox Signal., 1321, 107-127, doi: https://doi.org/10.1089/ars.2020.8039.

    Article  PubMed  Google Scholar 

  28. Borisov, V. B., and Verkhovsky, M. I. (2015) Oxygen as Acceptor, EcoSal Plus, 6, doi: https://doi.org/10.1128/ecosalplus.ESP-0012-2015.

    Article  PubMed  Google Scholar 

  29. Jünemann, S. (1997) Cytochrome bd terminal oxidase, Biochim. Biophys. Acta, 1321, 107-127, doi: https://doi.org/10.1016/S0005-2728(97)00046-7.

    Article  PubMed  Google Scholar 

  30. Azarkina, N., Borisov, V., and Konstantinov, A. A. (1997) Spontaneous spectral changes of the reduced cytochrome bd, FEBS Lett., 416, 171-174, doi: https://doi.org/10.1016/S0014-5793(97)01196-4.

    Article  CAS  PubMed  Google Scholar 

  31. Gavrikova, E. V., Grivennikova, V. G., Borisov, V. B., Cecchini, G., and Vinogradov, A. D. (2009) Assembly of a chimeric respiratory chain from bovine heart submitochondrial particles and cytochrome bd terminal oxidase of Escherichia coli, FEBS Lett., 583, 1287-1291, doi: https://doi.org/10.1016/j.febslet.2009.03.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Borisov, V. B., Gennis, R. B., Hemp, J., and Verkhovsky, M. I. (2011) The cytochrome bd respiratory oxygen reductases, Biochim. Biophys. Acta, 1807, 1398-1413, doi: https://doi.org/10.1016/j.bbabio.2011.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sousa, F. L., Alves, R. J., Ribeiro, M. A., Pereira-Leal, J. B., Teixeira, M., and Pereira, M. M. (2012) The superfamily of heme-copper oxygen reductases: types and evolutionary considerations, Biochim. Biophys. Acta, 1817, 629-637, doi: https://doi.org/10.1016/j.bbabio.2011.09.020.

    Article  CAS  PubMed  Google Scholar 

  34. Siletsky, S. A., Borisov, V. B., and Mamedov, M. D. (2017) Photosystem II and terminal respiratory oxidases: molecular machines operating in opposite directions, Front. Biosci. (Landmark Ed.), 22, 1379-1426, doi: https://doi.org/10.2741/4550.

    Article  CAS  Google Scholar 

  35. Borisov, V. B., and Siletsky, S. A. (2019) Features of organization and mechanism of catalysis of two families of terminal oxidases: heme-copper and bd-type, Biochemistry (Moscow), 84, 1390-1402, doi: https://doi.org/10.1134/S0006297919110130.

    Article  CAS  Google Scholar 

  36. Konstantinov, A. A., Siletsky, S., Mitchell, D., Kaulen, A., and Gennis, R. B. (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer, Proc. Natl. Acad. Sci. USA, 94, 9085-9090, doi: https://doi.org/10.1073/pnas.94.17.9085.

    Article  CAS  PubMed  Google Scholar 

  37. Abramson, J., Riistama, S., Larsson, G., Jasaitis, A., Svensson-Ek, M., et al. (2000) The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site, Nat. Struct. Biol., 7, 910-917, doi: https://doi.org/10.1038/82824.

    Article  CAS  PubMed  Google Scholar 

  38. Chepuri, V., Lemieux, L. J., Au, D. C.-T., and Gennis, R. B. (1990) The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa3-type family of the cytochrome c oxidases, J. Biol. Chem., 265, 11185-11192.

    Article  CAS  Google Scholar 

  39. Choi, S. K., Schurig-Briccio, L., Ding, Z., Hong, S., Sun, C., and Gennis, R. B. (2017) Location of the substrate binding site of the cytochrome bo3 ubiquinol oxidase from Escherichia coli, J. Am. Chem. Soc., 139, 8346-8354, doi: https://doi.org/10.1021/jacs.7b03883.

    Article  CAS  PubMed  Google Scholar 

  40. Cotter, P. A., Chepuri, V., Gennis, R. B., and Gunsalus, R. P. (1990) Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product, J. Bacteriol., 172, 6333-6338, doi: https://doi.org/10.1128/jb.172.11.6333-6338.1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Svensson, M., and Nilsson, T. (1993) Flow-flash study of the reaction between cytochrome bo and oxygen, Biochemistry, 32, 5442-5447, doi: https://doi.org/10.1021/bi00071a021.

    Article  CAS  PubMed  Google Scholar 

  42. Belevich, I., Borisov, V. B., Konstantinov, A. A., and Verkhovsky, M. I. (2005) Oxygenated complex of cytochrome bd from Escherichia coli: stability and photolability, FEBS Lett., 579, 4567-4570, doi: https://doi.org/10.1016/j.febslet.2005.07.011.

    Article  CAS  PubMed  Google Scholar 

  43. Arutyunyan, A. M., Sakamoto, J., Inadome, M., Kabashima, Y., and Borisov, V. B. (2012) Optical and magneto-optical activity of cytochrome bd from Geobacillus thermodenitrificans, Biochim. Biophys. Acta, 1817, 2087-2094, doi: https://doi.org/10.1016/j.bbabio.2012.06.009.

    Article  CAS  PubMed  Google Scholar 

  44. Borisov, V. B. (1996) Cytochrome bd: structure and properties, Biochemistry (Moscow), 61, 565-574.

    Google Scholar 

  45. Azarkina, N., Siletsky, S., Borisov, V., von Wachenfeldt, C., Hederstedt, L., and Konstantinov, A. A. (1999) A cytochrome bb′-type quinol oxidase in Bacillus subtilis strain 168, J. Biol. Chem., 274, 32810-32817, doi: https://doi.org/10.1074/jbc.274.46.32810.

    Article  CAS  PubMed  Google Scholar 

  46. Yang, K., Borisov, V. B., Konstantinov, A. A., and Gennis, R. B. (2008) The fully oxidized form of the cytochrome bd quinol oxidase from E. coli does not participate in the catalytic cycle: direct evidence from rapid kinetics studies, FEBS Lett., 582, 3705-3709, doi: https://doi.org/10.1016/j.febslet.2008.09.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Forte, E., Borisov, V. B., Vicente, J. B., and Giuffrè, A. (2017) Cytochrome bd and gaseous ligands in bacterial physiology, Adv. Microb. Physiol., 71, 171-234, doi: https://doi.org/10.1016/bs.ampbs.2017.05.002.

    Article  CAS  PubMed  Google Scholar 

  48. Borisov, V. B. (2020) Effect of membrane environment on ligand-binding properties of the terminal oxidase cytochrome bd-I from Escherichia coli, Biochemistry (Moscow), 85, 1603-1612, doi: https://doi.org/10.1134/S0006297920120123.

    Article  CAS  Google Scholar 

  49. Pereira, M. M., Gomes, C. M., and Teixeira, M. (2002) Plasticity of proton pathways in haem-copper oxygen reductases, FEBS Lett., 522, 14-18, doi: https://doi.org/10.1016/S0014-5793(02)02920-4.

    Article  CAS  PubMed  Google Scholar 

  50. Yoshikawa, S., and Shimada, A. (2015) Reaction mechanism of cytochrome c oxidase, Chem. Rev., 115, 1936-1989, doi: https://doi.org/10.1021/cr500266a.

    Article  CAS  PubMed  Google Scholar 

  51. Papa, S., Capitanio, G., and Papa, F. (2018) The mechanism of coupling between oxido-reduction and proton translocation in respiratory chain enzymes, Biol. Rev. Camb. Philos. Soc., 93, 322-349, doi: https://doi.org/10.1111/brv.12347.

    Article  PubMed  Google Scholar 

  52. Borisov, V. B. (2002) Defects in mitochondrial respiratory complexes III and IV, and human pathologies, Mol. Aspects Med., 23, 385-412, doi: https://doi.org/10.1016/s0098-2997(02)00013-4.

    Article  CAS  PubMed  Google Scholar 

  53. Borisov, V. B. (2004) Mutations in respiratory chain complexes and human diseases, Ital. J. Biochem., 53, 34-40.

    CAS  PubMed  Google Scholar 

  54. Puustinen, A., Finel, M., Haltia, T., Gennis, R. B., and Wikström, M. (1991) Properties of the two terminal oxidases of Escherichia coli, Biochemistry, 30, 3936-3942, doi: https://doi.org/10.1021/bi00230a019.

    Article  CAS  PubMed  Google Scholar 

  55. Jasaitis, A., Borisov, V. B., Belevich, N. P., Morgan, J. E., Konstantinov, A. A., and Verkhovsky, M. I. (2000) Electrogenic reactions of cytochrome bd, Biochemistry, 39, 13800-13809, doi: https://doi.org/10.1021/bi001165n.

    Article  CAS  PubMed  Google Scholar 

  56. Wikström, M., Morgan, J. E., and Verkhovsky, M. I. (1997) Proton and electrical charge translocation by cytochrome c-oxidase, Biochim. Biophys. Acta, 1318, 299-306, doi: https://doi.org/10.1016/S0005-2728(96)00152-1.

    Article  Google Scholar 

  57. Belevich, I., Borisov, V. B., Zhang, J., Yang, K., Konstantinov, A. A., et al. (2005) Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site, Proc. Natl. Acad. Sci. USA, 102, 3657-3662, doi: https://doi.org/10.1073/pnas.0405683102.

    Article  CAS  PubMed  Google Scholar 

  58. Belevich, I., Borisov, V. B., and Verkhovsky, M. I. (2007) Discovery of the true peroxy intermediate in the catalytic cycle of terminal oxidases by real-time measurement, J. Biol. Chem., 282, 28514-28519, doi: https://doi.org/10.1074/jbc.M705562200.

    Article  CAS  PubMed  Google Scholar 

  59. Borisov, V. B., Belevich, I., Bloch, D. A., Mogi, T., and Verkhovsky, M. I. (2008) Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme b595/heme d active site, Biochemistry, 47, 7907-7914, doi: https://doi.org/10.1021/bi800435a.

    Article  CAS  PubMed  Google Scholar 

  60. Borisov, V. B., Murali, R., Verkhovskaya, M. L., Bloch, D. A., Han, H., et al. (2011) Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode, Proc. Natl. Acad. Sci. USA, 108, 17320-17324, doi: https://doi.org/10.1073/pnas.1108217108.

    Article  PubMed  Google Scholar 

  61. Safarian, S., Hahn, A., Mills, D. J., Radloff, M., Eisinger, M. L., et al. (2019) Active site rearrangement and structural divergence in prokaryotic respiratory oxidases, Science, 366, 100-104, doi: https://doi.org/10.1126/science.aay0967.

    Article  CAS  PubMed  Google Scholar 

  62. Theßeling, A., Rasmussen, T., Burschel, S., Wohlwend, D., Kagi, J., et al. (2019) Homologous bd oxidases share the same architecture but differ in mechanism, Nat. Commun., 10, 5138, doi: https://doi.org/10.1038/s41467-019-13122-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miller, M. J., and Gennis, R. B. (1983) The purification and characterization of the cytochrome d terminal oxidase complex of the Escherichia coli aerobic respiratory chain, J. Biol. Chem., 258, 9159-9165.

    Article  CAS  Google Scholar 

  64. Kita, K., Konishi, K., and Anraku, Y. (1984) Terminal oxidases of Escherichia coli aerobic respiratory chain. II. Purification and properties of cytochrome b558-d complex from cells grown with limited oxygen and evidence of branched electron-carrying systems, J. Biol. Chem., 259, 3375-3381.

    Article  CAS  Google Scholar 

  65. Sun, Y. H., de Jong, M. F., den Hartigh, A. B., Roux, C. M., Rolan, H. G., and Tsolis, R. M. (2012) The small protein CydX is required for function of cytochrome bd oxidase in Brucella abortus, Front. Cell. Infect. Microbiol., 2, 47, doi: https://doi.org/10.3389/fcimb.2012.00047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. VanOrsdel, C. E., Bhatt, S., Allen, R. J., Brenner, E. P., Hobson, J. J., et al. (2013) The Escherichia coli CydX protein is a member of the CydAB cytochrome bd oxidase complex and is required for cytochrome bd oxidase activity, J. Bacteriol., 195, 3640-3650, doi: https://doi.org/10.1128/JB.00324-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hoeser, J., Hong, S., Gehmann, G., Gennis, R. B., and Friedrich, T. (2014) Subunit CydX of Escherichia coli cytochrome bd ubiquinol oxidase is essential for assembly and stability of the di-heme active site, FEBS Lett., 588, 1537-1541, doi: https://doi.org/10.1016/j.febslet.2014.03.036.

    Article  CAS  PubMed  Google Scholar 

  68. Chen, H., Luo, Q., Yin, J., Gao, T., and Gao, H. (2015) Evidence for requirement of CydX in function but not assembly of the cytochrome bd oxidase in Shewanella oneidensis, Biochim. Biophys. Acta, 1850, 318-328, doi: https://doi.org/10.1016/j.bbagen.2014.10.005.

    Article  CAS  PubMed  Google Scholar 

  69. Hobson, J. J., Gallegos, A. S., Atha, B. W., 3rd, Kelly, J. P., Lein, C. D., et al. (2018) Investigation of amino acid specificity in the CydX small protein shows sequence plasticity at the functional level, PLoS One, 13, e0198699, doi: https://doi.org/10.1371/journal.pone.0198699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Duc, K. M., Kang, B. G., Lee, C., Park, H. J., Park, Y. M., et al. (2020) The small protein CydX is required for cytochrome bd quinol oxidase stability and function in Salmonella Typhimurium: a phenotypic study, J. Bacteriol., 202, e00348-19, doi: https://doi.org/10.1128/JB.00348-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hill, J. J., Alben, J. O., and Gennis, R. B. (1993) Spectroscopic evidence for a heme-heme binuclear center in the cytochrome bd ubiquinol oxidase from Escherichia coli, Proc. Natl. Acad. Sci. USA, 90, 5863-5867, doi: https://doi.org/10.1073/pnas.90.12.5863.

    Article  CAS  PubMed  Google Scholar 

  72. Tsubaki, M., Hori, H., Mogi, T., and Anraku, Y. (1995) Cyanide-binding site of bd-type ubiquinol oxidase from Escherichia coli, J. Biol. Chem., 270, 28565-28569, doi: https://doi.org/10.1074/jbc.270.48.28565.

    Article  CAS  PubMed  Google Scholar 

  73. Borisov, V., Arutyunyan, A. M., Osborne, J. P., Gennis, R. B., and Konstantinov, A. A. (1999) Magnetic circular dichroism used to examine the interaction of Escherichia coli cytochrome bd with ligands, Biochemistry, 38, 740-750, doi: https://doi.org/10.1021/bi981908t.

    Article  CAS  PubMed  Google Scholar 

  74. Vos, M. H., Borisov, V. B., Liebl, U., Martin, J. L., and Konstantinov, A. A. (2000) Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: a di-heme active site? Proc. Natl. Acad. Sci. USA, 97, 1554-1559, doi: https://doi.org/10.1073/pnas.030528197.

    Article  CAS  PubMed  Google Scholar 

  75. Borisov, V. B., Sedelnikova, S. E., Poole, R. K., and Konstantinov, A. A. (2001) Interaction of cytochrome bd with carbon monoxide at low and room temperatures: evidence that only a small fraction of heme b595 reacts with CO, J. Biol. Chem., 276, 22095-22099, doi: https://doi.org/10.1074/jbc.M011542200.

    Article  CAS  PubMed  Google Scholar 

  76. Borisov, V. B., Liebl, U., Rappaport, F., Martin, J. L., Zhang, J., et al. (2002) Interactions between heme d and heme b595 in quinol oxidase bd from Escherichia coli: a photoselection study using femtosecond spectroscopy, Biochemistry, 41, 1654-1662, doi: https://doi.org/10.1021/bi0158019.

    Article  CAS  PubMed  Google Scholar 

  77. Arutyunyan, A. M., Borisov, V. B., Novoderezhkin, V. I., Ghaim, J., Zhang, J., et al. (2008) Strong excitonic interactions in the oxygen-reducing site of bd-type oxidase: the Fe-to-Fe distance between hemes d and b595 is 10 Å, Biochemistry, 47, 1752-1759, doi: https://doi.org/10.1021/bi701884g.

    Article  CAS  PubMed  Google Scholar 

  78. Borisov, V. B. (2008) Interaction of bd-type quinol oxidase from Escherichia coli and carbon monoxide: heme d binds CO with high affinity, Biochemistry (Moscow), 73, 14-22, doi: https://doi.org/10.1134/S0006297908010021.

    Article  CAS  Google Scholar 

  79. Bloch, D. A., Borisov, V. B., Mogi, T., and Verkhovsky, M. I. (2009) Heme/heme redox interaction and resolution of individual optical absorption spectra of the hemes in cytochrome bd from Escherichia coli, Biochim. Biophys. Acta, 1787, 1246-1253, doi: https://doi.org/10.1016/j.bbabio.2009.05.003.

    Article  CAS  PubMed  Google Scholar 

  80. Rappaport, F., Zhang, J., Vos, M. H., Gennis, R. B., and Borisov, V. B. (2010) Heme-heme and heme-ligand interactions in the di-heme oxygen-reducing site of cytochrome bd from Escherichia coli revealed by nanosecond absorption spectroscopy, Biochim. Biophys. Acta, 1797, 1657-1664, doi: https://doi.org/10.1016/j.bbabio.2010.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Borisov, V. B., and Verkhovsky, M. I. (2013) Accommodation of CO in the di-heme active site of cytochrome bd terminal oxidase from Escherichia coli, J. Inorg. Biochem., 118, 65-67, doi: https://doi.org/10.1016/j.**orgbio.2012.09.016.

    Article  CAS  PubMed  Google Scholar 

  82. Siletsky, S. A., Zaspa, A. A., Poole, R. K., and Borisov, V. B. (2014) Microsecond time-resolved absorption spectroscopy used to study CO compounds of cytochrome bd from Escherichia coli, PLoS One, 9, e95617, doi: https://doi.org/10.1371/journal.pone.0095617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Siletsky, S. A., Rappaport, F., Poole, R. K., and Borisov, V. B. (2016) Evidence for fast electron transfer between the high-spin haems in cytochrome bd-I from Escherichia coli, PLoS One, 11, e0155186, doi: https://doi.org/10.1371/journal.pone.0155186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Siletsky, S. A., Dyuba, A. V., Elkina, D. A., Monakhova, M. V., and Borisov, V. B. (2017) Spectral-kinetic analysis of recombination reaction of heme centers of bd-type quinol oxidase from Escherichia coli with carbon monoxide, Biochemistry (Moscow), 82, 1354-1366, doi: https://doi.org/10.1134/S000629791711013X.

    Article  CAS  Google Scholar 

  85. Forte, E., Borisov, V. B., Konstantinov, A. A., Brunori, M., Giuffrè, A., and Sarti, P. (2007) Cytochrome bd, a key oxidase in bacterial survival and tolerance to nitrosative stress, Ital. J. Biochem., 56, 265-269.

    PubMed  Google Scholar 

  86. Borisov, V. B., Forte, E., Siletsky, S. A., Arese, M., Davletshin, A. I., Sarti, P., and Giuffrè, A. (2015) Cytochrome bd protects bacteria against oxidative and nitrosative stress: a potential target for next-generation antimicrobial agents, Biochemistry (Moscow), 80, 565-575, doi: https://doi.org/10.1134/S0006297915050077.

    Article  CAS  Google Scholar 

  87. Giuffrè, A., Borisov, V. B., Mastronicola, D., Sarti, P., and Forte, E. (2012) Cytochrome bd oxidase and nitric oxide: from reaction mechanisms to bacterial physiology, FEBS Lett., 586, 622-629, doi: https://doi.org/10.1016/j.febslet.2011.07.035.

    Article  CAS  PubMed  Google Scholar 

  88. Giuffrè, A., Borisov, V. B., Arese, M., Sarti, P., and Forte, E. (2014) Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress, Biochim. Biophys. Acta, 1837, 1178-1187, doi: https://doi.org/10.1016/j.bbabio.2014.01.016.

    Article  CAS  PubMed  Google Scholar 

  89. Borisov, V., Gennis, R., and Konstantinov, A. A. (1995) Peroxide complex of cytochrome bd: kinetics of generation and stability, Biochem. Mol. Biol. Int., 37, 975-982.

    CAS  PubMed  Google Scholar 

  90. Borisov, V. B., Gennis, R. B., and Konstantinov, A. A. (1995) Interaction of cytochrome bd from Escherichia coli with hydrogen peroxide, Biochemistry (Moscow), 60, 231-239.

    Google Scholar 

  91. Borisov, V. B., Davletshin, A. I., and Konstantinov, A. A. (2010) Peroxidase activity of cytochrome bd from Escherichia coli, Biochemistry (Moscow), 75, 428-436, doi: https://doi.org/10.1134/S000629791004005X.

    Article  CAS  Google Scholar 

  92. Borisov, V. B., Forte, E., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffrè, A. (2013) Cytochrome bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress, FEBS Lett., 587, 2214-2218, doi: https://doi.org/10.1016/j.febslet.2013.05.047.

    Article  CAS  PubMed  Google Scholar 

  93. Forte, E., Borisov, V. B., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffrè, A. (2013) Cytochrome bd oxidase and hydrogen peroxide resistance in Mycobacterium tuberculosis, mBio, 4, e01006-01013, doi: https://doi.org/10.1128/mBio.01006-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Al-Attar, S., Yu, Y., Pinkse, M., Hoeser, J., Friedrich, T., Bald, D., and de Vries, S. (2016) Cytochrome bd displays significant quinol peroxidase activity, Sci. Rep., 6, 27631, doi: https://doi.org/10.1038/srep27631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Borisov, V. B., Forte, E., Siletsky, S. A., Sarti, P., and Giuffrè, A. (2015) Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition, Biochim. Biophys. Acta, 1847, 182-188, doi: https://doi.org/10.1016/j.bbabio.2014.10.006.

    Article  CAS  PubMed  Google Scholar 

  96. Borisov, V. B., Forte, E., Konstantinov, A. A., Poole, R. K., Sarti, P., and Giuffrè, A. (2004) Interaction of the bacterial terminal oxidase cytochrome bd with nitric oxide, FEBS Lett., 576, 201-204, doi: https://doi.org/10.1016/j.febslet.2004.09.013.

    Article  CAS  PubMed  Google Scholar 

  97. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffrè, A. (2006) Nitric oxide reacts with the ferryl-oxo catalytic intermediate of the CuB-lacking cytochrome bd terminal oxidase, FEBS Lett., 580, 4823-4826, doi: https://doi.org/10.1016/j.febslet.2006.07.072.

    Article  CAS  PubMed  Google Scholar 

  98. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffrè, A. (2007) Redox control of fast ligand dissociation from Escherichia coli cytochrome bd, Biochem. Biophys. Res. Commun., 355, 97-102, doi: https://doi.org/10.1016/j.bbrc.2007.01.118.

    Article  CAS  PubMed  Google Scholar 

  99. Mason, M. G., Shepherd, M., Nicholls, P., Dobbin, P. S., Dodsworth, K. S., et al. (2009) Cytochrome bd confers nitric oxide resistance to Escherichia coli, Nat. Chem. Biol., 5, 94-96, doi: https://doi.org/10.1038/nchembio.135.

    Article  CAS  PubMed  Google Scholar 

  100. Borisov, V. B., Forte, E., Giuffrè, A., Konstantinov, A., and Sarti, P. (2009) Reaction of nitric oxide with the oxidized di-heme and heme-copper oxygen-reducing centers of terminal oxidases: Different reaction pathways and end-products, J. Inorg. Biochem., 103, 1185-1187, doi: https://doi.org/10.1016/j.**orgbio.2009.06.002.

    Article  CAS  PubMed  Google Scholar 

  101. Forte, E., Borisov, V. B., Siletsky, S. A., Petrosino, M., and Giuffrè, A. (2019) In the respiratory chain of Escherichia coli cytochromes bd-I and bd-II are more sensitive to carbon monoxide inhibition than cytochrome bo3, Biochim. Biophys. Acta (Bioenerg.), 1860, 148088, doi: https://doi.org/10.1016/j.bbabio.2019.148088.

    Article  CAS  Google Scholar 

  102. Alexeeva, S., Hellingwerf, K. J., and Teixeira de Mattos, M. J. (2003) Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions, J. Bacteriol., 185, 204-209, doi: https://doi.org/10.1128/jb.185.1.204-209.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Atlung, T., and Brøndsted, L. (1994) Role of the transcriptional activator AppY in regulation of the cyx appA operon of Escherichia coli by anaerobiosis, phosphate starvation, and growth phase, J. Bacteriol., 176, 5414-5422, doi: https://doi.org/10.1128/jb.176.17.5414-5422.1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Brøndsted, L., and Atlung, T. (1996) Effect of growth conditions on expression of the acid phosphatase (cyx-appA) operon and the appY gene, which encodes a transcriptional activator of Escherichia coli, J. Bacteriol., 178, 1556-1564, doi: https://doi.org/10.1128/jb.178.6.1556-1564.1996.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Belevich, I., Borisov, V. B., Bloch, D. A., Konstantinov, A. A., and Verkhovsky, M. I. (2007) Cytochrome bd from Azotobacter vinelandii: evidence for high-affinity oxygen binding, Biochemistry, 46, 11177-11184, doi: https://doi.org/10.1021/bi700862u.

    Article  CAS  PubMed  Google Scholar 

  106. Poole, R. K., Kumar, C., Salmon, I., and Chance, B. (1983) The 650 nm chromophore in Escherichia coli is an “Oxy-” or oxygenated compound, not the oxidized form of cytochrome oxidase d: A hypothesis, J. Gen. Microbiol., 129, 1335-1344, doi: https://doi.org/10.1099/00221287-129-5-1335.

    Article  CAS  PubMed  Google Scholar 

  107. Kahlow, M. A., Loehr, T. M., Zuberi, T. M., and Gennis, R. B. (1993) The oxygenated complex of cytochrome d terminal oxidase: direct evidence for Fe-O2 coordination in a chlorin-containing enzyme by Resonance Raman spectroscopy, J. Am. Chem. Soc., 115, 5845-5846, doi: https://doi.org/10.1021/ja00066a071.

    Article  CAS  Google Scholar 

  108. Borisov, V. B., Smirnova, I. A., Krasnosel’skaya, I. A., and Konstantinov, A. A. (1994) Oxygenated cytochrome bd from Escherichia coli can be converted into the oxidized form by lipophilic electron acceptors, Biochemistry (Moscow), 59, 437-443.

    Google Scholar 

  109. Borisov, V. B., Forte, E., Sarti, P., and Giuffrè, A. (2011) Catalytic intermediates of cytochrome bd terminal oxidase at steady-state: ferryl and oxy-ferrous species dominate, Biochim. Biophys. Acta, 1807, 503-509, doi: https://doi.org/10.1016/j.bbabio.2011.02.007.

    Article  CAS  PubMed  Google Scholar 

  110. Petersen, L. C. (1977) The effect of inhibitors on the oxygen kinetics of cytochrome c oxidase, Biochim. Biophys. Acta, 460, 299-307, doi: https://doi.org/10.1016/0005-2728(77)90216-X.

    Article  CAS  PubMed  Google Scholar 

  111. Nicholls, P. (1975) The effect of sulphide on cytochrome aa3. Isosteric and allosteric shifts of the reduced α-peak, Biochim. Biophys. Acta, 396, 24-35, doi: https://doi.org/10.1016/0005-2728(75)90186-3.

    Article  CAS  PubMed  Google Scholar 

  112. Cooper, C. E., and Brown, G. C. (2008) The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance, J. Bioenerg. Biomembr., 40, 533-539, doi: https://doi.org/10.1007/s10863-008-9166-6.

    Article  CAS  PubMed  Google Scholar 

  113. Rabeh, W. M., and Cook, P. F. (2004) Structure and mechanism of O-acetylserine sulfhydrylase, J. Biol. Chem., 279, 26803-26806, doi: https://doi.org/10.1074/jbc.R400001200.

    Article  CAS  PubMed  Google Scholar 

  114. Korshunov, S., Imlay, K. R., and Imlay, J. A. (2016) The cytochrome bd oxidase of Escherichia coli prevents respiratory inhibition by endogenous and exogenous hydrogen sulfide, Mol. Microbiol., 101, 62-77, doi: https://doi.org/10.1111/mmi.13372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Saini, V., Chinta, K. C., Reddy, V. P., Glasgow, J. N., Stein, A., et al. (2020) Hydrogen sulfide stimulates Mycobacterium tuberculosis respiration, growth and pathogenesis, Nat. Commun., 11, 557, doi: https://doi.org/10.1038/s41467-019-14132-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nicholls, P., and Kim, J. K. (1982) Sulphide as an inhibitor and electron donor for the cytochrome c oxidase system, Can. J. Biochem., 60, 613-623, doi: https://doi.org/10.1139/o82-076.

    Article  CAS  PubMed  Google Scholar 

  117. Nicholls, P., Petersen, L. C., Miller, M., and Hansen, F. B. (1976) Ligand-induced spectral changes in cytochrome c oxidase and their possible significance, Biochim. Biophys. Acta, 449, 188-196, doi: https://doi.org/10.1016/0005-2728(76)90132-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

V. B. Borisov thanks V. P. Skulachev and A. D. Vinogradov for their interest in this work and useful discussion. V. B. Borisov would also like to express his deepest gratitude to A. A. Konstantinov (passed away May 1, 2020), who in 1993 suggested the author (then a PhD student) to study cytochrome bd.

Funding

This work was supported by the Russian Science Foundation (project no. 19-14-00063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaliy B. Borisov.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, V.B., Forte, E. Terminal Oxidase Cytochrome bd Protects Bacteria Against Hydrogen Sulfide Toxicity. Biochemistry Moscow 86, 22–32 (2021). https://doi.org/10.1134/S000629792101003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792101003X

Keywords

Navigation