Log in

Use of models of biomacromolecule separation in AMT database generation for shotgun proteomics

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Generation of a complex proteome database requires use of powerful analytical methods capable of following rapid changes in the proteome due to changing physiological and pathological states of the organism under study. One of the promising technologies with this regard is the use of so-called Accurate Mass and Time (AMT) tag peptide databases. Generation of an AMT database for a complex proteome requires combined efforts by many research groups and laboratories, but the chromatography data resulting from these efforts are tied to the particular experimental conditions and, in general, are not transferable from one platform to another. In this work, we consider an approach to solve this problem that is based on the generation of a universal scale for the chromatography data using a multiple-point normalization method. The method follows from the concept of linear correlation between chromatography data obtained over a wide range of separation parameters. The method is further tested for tryptic peptide mixtures with experimental data collected from mutual studies by different independent research groups using different separation protocols and mass spectrometry data processing tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMT:

accurate mass and time

BioLCCC:

liquid chromatography of biomacromolecules under critical conditions

LSS:

Linear Solvent Strength theory proposed by Snyder

MPN:

multi-point normalization

MS/MS:

tandem mass spectrometry

SSRCalc:

Sequence Specific Retention Calculator

References

  1. Conrads, T. P., Anderson, G. A., Veenstra, T. D., Pasa-Tolic, L., and Smith, R. D. (2000) Anal. Chem., 72, 3349–3354.

    Article  CAS  PubMed  Google Scholar 

  2. Norbek, A. D., Monroe, M. E., Adkins, J. N., Anderson, K. K., Daly, D. S., and Smith, R. D. (2005) Am. Soc. Mass Spectrom., 16, 1239–1249.

    Article  Google Scholar 

  3. May, D., Fitzgibbon, M., Liu, Y., Holzman, T., Eng, J., Kemp, C. J., Whiteaker, J., Paulovich, A., and McIntosh, M. (2007) J. Proteome Res., 6, 2685–2694.

    Article  CAS  PubMed  Google Scholar 

  4. Petritis, K., Kangas, L. J., Ferguson, P. L., Anderson, G. A., Pasa-Tolic, L., Lipton, M. S., Auberry, K. J., Strittmatter, E. F., Shen, Y., Zhao, R., and Smith, R. D. (2003) Anal. Chem., 75, 1039–1048.

    Article  CAS  PubMed  Google Scholar 

  5. Sapirstein, H. D., Scanlon, M. G., and Bushuk, W. (1989) J. Chromatogr. A, 469, 127–135.

    Article  CAS  Google Scholar 

  6. Krokhin, O. V., Craig, R., Spicer, V., Ens, V., Standing, K. G., Beavis, R. C., and Wilkins, J. A. (2004) Mol. Cell. Proteom., 3, 908–919.

    Article  CAS  Google Scholar 

  7. Spiser, V., Yamchuk, A., Cortens, J., Sousa, S., Ens, W., Standing, K. G., Wilkins, J. A., and Krokhin, O. V. (2007) Anal. Chem., 79, 8762–8768.

    Article  Google Scholar 

  8. Shinoda, K., Tomita, M., and Ishihama, Y. (2008) Bioinformatics, 24, 1590–1595.

    Article  CAS  PubMed  Google Scholar 

  9. Snyder, L. R. (1983) J. Chromatogr., 255, 3–26.

    Article  CAS  Google Scholar 

  10. Tarasova, I. A., Guryca, V., Pridatchenko, M. L., Gorshkov, A. V., Kieffer-Jaquinod, S., Evreinov, V. V., Masselon, C. D., and Gorshkov, M. V. (2009) J. Chromatogr. B, 877, 433–440.

    Article  CAS  Google Scholar 

  11. Gorshkov, A. V., Tarasova, I. A., Evreinov, V. V., Savitski, M. M., Nielsen, M. L., Zubarev, R. A., and Gorshkov, M. V. (2006) Anal. Chem., 78, 7770–7778.

    Article  CAS  PubMed  Google Scholar 

  12. Gorshkov, A. V., Evreinov, V. V., Tarasova, I. A., and Gorshkov, M. V. (2007) Polymer Sci. Ser. B, 49, 93–107.

    Article  Google Scholar 

  13. Tarasova, I. A., Gorshkov, A. V., Evreinov, V. V., Zubarev, R. A., and Gorshkov, M. V. (2008) Polymer Sci. Ser. B, 50, 1–15.

    Article  Google Scholar 

  14. Casal, V., Martin-Alvarez, P. J., and Herraiz, T. (1996) Analyt. Chim. Acta, 326, 77–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Gorshkov.

Additional information

Original Russian Text © M. L. Pridatchenko, I. A. Tarasova, V. Guryca, A. S. Kononikhin, C. Adams, D. A. Tolmachev, A. Yu. Agapov, V. V. Evreinov, I. A. Popov, E. N. Nikolaev, R. A. Zubarev, A. V. Gorshkov, C. D. Masselon, M. V. Gorshkov, 2009, published in Biokhimiya, 2009, Vol. 74, No. 11, pp. 1469–1478.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM09-039, July 5, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pridatchenko, M.L., Tarasova, I.A., Guryca, V. et al. Use of models of biomacromolecule separation in AMT database generation for shotgun proteomics. Biochemistry Moscow 74, 1195–1202 (2009). https://doi.org/10.1134/S0006297909110030

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909110030

Key words

Navigation