Log in

Randomized Machine Learning Algorithms to Forecast the Evolution of Thermokarst Lakes Area in Permafrost Zones

  • INTELLECTUAL CONTROL SYSTEMS, DATA ANALYSIS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Randomized machine learning focuses on problems with considerable uncertainty in data and models. Machine learning algorithms are formulated in terms of a functional entropy-linear programming problem. We adapt these algorithms to forecasting problems on an example of the evolution of thermokarst lakes area in permafrost zones. Thermokarst lakes generate methane, a greenhouse gas affecting climate change. We propose randomized machine learning procedures using dynamic regression models with random parameters and retrospective data (climatic parameters and remote sensing of the Earth’s surface). The randomized machine learning algorithm developed below estimates the probability density functions of model parameters and measurement noises. Randomized forecasting is implemented as algorithms transforming the optimal distributions into the corresponding random sequences (sampling algorithms). The randomized forecasting procedures and technologies are trained, tested, and then applied to forecast the evolution of thermokarst lakes area in Western Siberia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Vapnik, V.N., Statistical Learning Theory, John Willey & Sons, 1998.

    MATH  Google Scholar 

  2. Bishop, C., Pattern Recognition and Machine Learning, New York: Springer, 2007.

    MATH  Google Scholar 

  3. Friedman, J., Hastie T., and Tibshirani, R., The Elements of Statistical Learning, Springer Series in Statistics, vol. 1, Berlin: Springer, 2009.

  4. Popkov, Yu.S., Dubnov, Yu.A., and Popkov, A.Yu., Randomized machine learning: statement, solution, applications, Proc. IEEE Int. Conf. on Intelligent Systems, 2016, pp. 27–39.

  5. Zuidhoff, F.S. and Kolstrup, E., Changes in palsa distribution in relation to climate change in Laivadalen, Northern Sweden, especially 1960–1997, Permafrost and Periglacial Processes, 2000, vol. 11, pp. 55–69.

    Article  Google Scholar 

  6. Kirpotin, S., Polishchuk, Y., and Bruksina, N., Abrupt changes of thermokarst lakes in Western Siberia: Impacts of climatic warming on permafrost melting, Int. J. Environmental Studies, 2009, vol. 66, no. 4, pp. 423–431.

    Article  Google Scholar 

  7. Karlson, J.M., Lyon, S.W., and Destouni, G., Temporal behavior of lake size-distribution in a thawing permafrost landscape in Northwestern Siberia, Remote Sensing, 2014, no. 6, pp. 621–636.

  8. Bryksina, N.A. and Polishchuk, Yu.M., Analysis of changes in the number of thermokarst lakes in permafrost of Western Siberia on the basis of satellite images, Cryosphere of Earth, 2015, vol. 19, no. 2, pp. 114–120.

    Google Scholar 

  9. Liu, Q., Rowe, M.D., Anderson, E.J., Stow, C.A., and Stumpf, R.P., Probabilistic forecast of microcystin toxin using satellite remote sensing, in situ observation and numerical modeling, Environment Modelling and Software, 2020, vol. 128, p. 104705.

  10. Vidyasagar, M., Statistical learning theory and randomized algorithms for control, IEEE Control System Magazine, 1998, vol. 1, no. 17, pp. 69–88.

    Google Scholar 

  11. Granichin, O.N. and Polyak, B.T., Randomizirovannye algoritmy otsenivaniya i optimizatsii pri pochti proizvol’nykh pomekhakh (Randomized Estimation and Optimization Algorithms under Almost Arbitrary Noises), Moscow: Nauka, 2002.

  12. Biondo, A.E., Pluchino, A., Rapisarda, A., and Helbing, D., Are random traiding strategies more successful than technical ones?, PLoS ONE, 2013, vol. 6, no. 7, p. e68344.

  13. Lutz, W., Sandersen, S., and Scherbov, S., The end of world population growth, Nature, 2001, vol. 412, no. 6846, pp. 543–545.

    Article  Google Scholar 

  14. Tsirlin, A.M., Metody usrednennoi optimizatsii i ikh primenenie (Average Optimization Methods and Their Application), Moscow: Fizmatlit, 1997.

  15. Shannon, C., Communication theory of secrecy systems, Bell System Technical Journal, 1949, vol. 28, no. 4, pp. 656–715.

    Article  MathSciNet  MATH  Google Scholar 

  16. Jaynes, E.T., Information theory and statistical mechanics, Physics Review, 1957, vol. 106, pp. 620–630.

    Article  MathSciNet  MATH  Google Scholar 

  17. Jaynes, E.T., Papers on Probability, Statistics and Statistical Physics, Dordrecht: Kluwer Academic Publisher, 1989.

    MATH  Google Scholar 

  18. Jaynes, E.T., Probability Theory. The Logic and Science, Cambridge University Press, 2003.

    Book  MATH  Google Scholar 

  19. Popkov, Yu.S., Popkov, A.Yu., and Dubnov, Yu.A., Entropy Randomization in Machine Learning, Chapman & Hall/CRC, 2022.

    Book  MATH  Google Scholar 

  20. Popkov, Y. and Popkov, A., New method of entropy-robust estimation for randomized models under limited data, Entropy, 2014, vol. 16, pp. 675–698.

    Article  Google Scholar 

  21. Ioffe, A.D. and Tihomirov, V.M., Theory of Extremal Problems, Amsterdam: NorthHolland, 1979.

    MATH  Google Scholar 

  22. Darkhovsky, B.S., Popkov, Y.S., Popkov, A.Y., and Aliev, A.S., A method of generating random vectors with a given probability density function, Autom. Remote Control, 2018, vol. 79, no. 9, pp. 1569–1581. https://doi.org/10.1134/S0005117918090035

    Article  MathSciNet  MATH  Google Scholar 

  23. Aivazyan, S.A., Enyukov, I.S., and Meshalkin, L.D., Prikladnaya statistika: Issledovanie zavisimostei (Applied Statistics: Study of Dependencies), Moscow: Finansy i Statistika, 1985.

  24. https://cloud.uriit.ru/index.php/s/0DOrxL9RmGqXsV0

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-11-20023.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. A. Dubnov, A. Yu. Popkov, V. Yu. Polishchuk, E. S. Sokol, A. V. Melnikov, Yu. M. Polishchuk or Yu. S. Popkov.

Additional information

This paper was recommended for publication by A.N. Sobolevski, a member of the Editorial Board

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubnov, Y.A., Popkov, A.Y., Polishchuk, V.Y. et al. Randomized Machine Learning Algorithms to Forecast the Evolution of Thermokarst Lakes Area in Permafrost Zones. Autom Remote Control 84, 56–70 (2023). https://doi.org/10.1134/S0005117923010034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117923010034

Keywords:

Navigation