Log in

Characterization of Metabolites in an Endophytic Fungus Diaporthe fraxini via NMR-based Metabolomics and Cholinesterase Inhibitory Activity

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Endophytic Diaporthe is a fungal genus having an extensive distribution in plant hosts. It is known as a valuable source of bioactive metabolites with potent biological properties. In the present study, proton nuclear magnetic resonance (1H-NMR) coupled with multivariate analysis (MVA) was employed to discriminate the chemical profile of Diaporthe fraxini cultured under different growth conditions. Cholinesterase inhibitory assay was performed to assess the activity of the fungal extracts against acetylcholinesterase and butyrylcholinesterase. Discriminant metabolites responsible for the chemical variations were successfully obtained using 1H-NMR-based metabolomics approach. Principal component analysis showed a clear discrimination of the fungal extracts of D. fraxini grown under different conditions. Cholinesterase inhibitory activity studies revealed the potential of supplemented cultured fungal extract of D. fraxini as a source of cholinesterase inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kong, Y.R., Tay, K.C., Su, Y.X., Wong, C.K., Tan, W.N., and Khaw, K.Y., Molecules, 2021, vol. 26, no. 3, p. 728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ruangritchankul, S., Chantharit, P., Srisuma, S., and Gray, L.C., Ther. Clin. Risk Manage., 2021, vol. 4, no. 17, pp. 927–949.

    Article  Google Scholar 

  3. Manganyi, M.C. and Ateba, C.N., Microorganisms, 2020, vol. 8, p. 1934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Strobel, G. and Daisy, B., Microbiol. Mol. Biol. Rev., 2003, vol. 67, no. 4, pp. 491–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nagarajan, K., Tong, W.-Y., Leong, C.-R., and Tan, W.-N., J. Microbiol. Biotechnol., 2021. vol. 31, no. 4, pp. 493–500.

    Article  CAS  PubMed  Google Scholar 

  6. Yenn, T.W., Ring, L.C., Nee, T.W., Khairuddean, M., Zakaria, L., and Ibrahim, D., J. Microbiol. Biotechnol., 2017, vol. 27, no. 6, pp. 1065–1070.

    Article  CAS  Google Scholar 

  7. Hossain, M.A. and Rahman, S.M.M., Arab. J. Chem., 2015, vol. 8, pp. 218–221.

    Article  CAS  Google Scholar 

  8. Nagarajan, K., Ibrahim, B., Bawadikji, A.A., Lim, J.-W., Tong, W.-Y., Leong, C.-R., et al., J. Fungi, 2022, vol. 8, no. 1, p. 28.

    Article  CAS  Google Scholar 

  9. Tan, W.-N., Nagarajan, K., Lim, V., Azizi, J., Khaw, K.-Y., Tong, W.-Y., et al., J. Fungi, 2022, vol. 8, no. 5, p. 519.

    Article  CAS  Google Scholar 

  10. Mediani, A., Abas, F., Maulidiani, M., Khatib, A., Tan, C.P., Ismail, I.S., et al., Molecules, 2017, vol. 22, p. 902.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Khaw, K.-Y., Kumar, P., Yusof, S.R., Ramanathan, S., and Murugaiyah, V., Arch. Pharm., 2020, vol. 353, no. 11, p. 2000156.

    Article  CAS  Google Scholar 

  12. **ong, N., Gao, X., Zhao, H., Cai, F., Zhang, F., Yuan, Y., et al., Nat. Commun., 2020, vol. 11, p. 3169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wrobel-Kwiatkowska, M., Turski, W., Kocki, T., Rakicka-Pustułka, M., and Rymowicz, W., Yeast, 2020, vol. 37, pp. 1–7.

    Article  Google Scholar 

  14. Wrobel-Kwiatkowska, M., Turski, W., Juszczyk, P., Kita, A., and Rymowicz, W., Sustainability, 2020, vol. 12, p. 9424.

    Article  CAS  Google Scholar 

  15. Teimoori-Boghsani, Y., Ganjeali, A., Cernava, T., Muller, H., Asili, J., and Berg, G., Front. Microbiol., 2020, vol. 10, p. 3013.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Alvarado, I.E., Navarro, D., Record, E., Asther, M., Asther, M., and Lesage-Meessen, L., World J. Microbiol. Biotechnol., 2003, vol. 19, pp. 157–160.

    Article  Google Scholar 

  17. Rao, P.V.S., Fritig, B., Vose, J.R., and Towers, G.H.N., Phytochemistry, 1971, vol. 10, pp. 51–56.

    Article  CAS  Google Scholar 

  18. Jo, M.J., Bae, S.J., Son, B.W., Kim, C.Y., and Kim, G.D., Cancer Cell Int., 2013, vol. 13, p. 49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qi, F.-H., **g, T.-Z., Wang, Z.-X., and Zhan, Y.-G., Lett. Appl. Microbiol., 2009, vol. 49, pp. 98–104.

    Article  CAS  PubMed  Google Scholar 

  20. Sarıozlu, N.Y. and Kıvanc, M., Afr. J. Biotechnol., 2009, vol. 8, no. 6, pp. 1110–1115.

    Google Scholar 

  21. Naveed, M., Hejazi, V., Abbas, M., Kamboh, A.A., Khan, G.J., Shumzaid, M., et al., Biomed. Pharmacother., 2018, vol. 97, pp. 67–74.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, X., Sang, X., Li, S., Zhang, S., and Bai, L., J. Ind. Microbiol. Biotechnol., 2010, vol. 37, pp. 447–454.

    Article  CAS  PubMed  Google Scholar 

  23. Li, K., Horanyi, P.S., Collins, R., Phillips, R.S., and Eriksson, K.-E.L., Enzyme Microb. Technol., 2001, vol. 28, pp. 301–307.

    Article  CAS  PubMed  Google Scholar 

  24. Koma, D., Yamanaka, H., Moriyoshi, K., Sakai, K., Masuda, T., Sato, Y., et al., Biosci. Biotechnol. Biochem., 2014, vol. 78, no. 2, pp. 350–357.

    Article  CAS  PubMed  Google Scholar 

  25. Encyclopedia of Mycology, Zaragoza, O. and Casadevall, A., Eds., Amsterdam: Elsevier, 2021, pp. 477–488.

    Google Scholar 

  26. Tang, C.-D., Ding, P.-J., Shi, H.-L., Yuan-yuan Jia, Y.-Y., Zhou, M.-Z., Yu, H.-L., et al., J. Agric. Food Chem. 2019, vol. 67, pp. 2946−2953.

    Article  CAS  PubMed  Google Scholar 

  27. Kochkin, D.A., Pharm. Chem. J., 1977, vol. 11, pp. 1155–1160.

    Article  Google Scholar 

  28. Biotechnology of Vitamins, Pigments and Growth Factors, Vandamme, E.J., Ed., Dordrecht: Springer, 1989.

    Google Scholar 

  29. Wang, G., Chen, X., Zhang, C., Li, M., Sun, C., Zhan, N., et al., Front. Microbiol., 2021, vol. 12, p. 746141.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhou, S. and Huang, G., Biomed. Pharmacother., 2022, vol. 146, p. 112556.

    Article  CAS  PubMed  Google Scholar 

  31. Darvesh, S., Hopkins, D.A., and Geula, C., Nat. Rev. Neurosci., 2003, vol. 4, p. 131.

    Article  CAS  PubMed  Google Scholar 

  32. Rodrigues, K.F., Costa, G.L., Carvalho, M.P., and Epifanio, R.A., World J. Microbiol. Biotechnol., 2005, vol. 21, pp. 1617–1621.

    Article  Google Scholar 

  33. Polli, A.D., Ribeiro, M.A.S., Garcia, A., Polonio, J.C., Santos, C.M., Silva, A.A., et al., Nat. Prod. Res., 2020 (in press). https://doi.org/10.1080/14786419.2020.1739681

  34. Majlath, Z., Tajti, J., and Vecsei, L., Ther. Adv. Neurol. Disord., 2013, vol. 6, no. 6, pp. 386–397.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Oboh, G., Agunloye, O.M., Akinyemi, A.J., Ademiluyi, A.O., and Adefegha, S.A., Neurochem. Res., 2013, vol. 38, pp. 413–419.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge Ministry of Higher Education Malaysia for Fundamental Research Grant Scheme with Project Code: FRGS/1/2018/STG01/USM/02/3.

Funding

This study was funded by the Ministry of Higher Education Malaysia for Fundamental Research Grant Scheme with Project Code: FRGS/1/2018/STG01/USM/02/3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.-N. Tan.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, K., Ibrahim, B., Bawadikji, A. et al. Characterization of Metabolites in an Endophytic Fungus Diaporthe fraxini via NMR-based Metabolomics and Cholinesterase Inhibitory Activity. Appl Biochem Microbiol 59, 316–322 (2023). https://doi.org/10.1134/S0003683823030134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823030134

Keywords:

Navigation