Log in

Creation and Functional Analysis of Mycolicibacterium smegmatis Recombinant Strains Carrying the Bacillary Cytochromes CYP106A1 and CYP106A2 Genes

  • PRODUCERS, BIOLOGY, SELECTION, AND GENE ENGINEERING
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Mycolicibacterium smegmatis mc2155 has been genetically modified to be used as a platform for the expression of heterologous cytochrome P450 monooxygenases by introducing deletions in the kshB and kstD genes that encode key stages of the steroid nucleus enzymatic degradation. Three sets of genetic constructs have been created for heterologous expression of the genes encoding P450 cytochromes CYP106A1 from Bacillus megaterium DSM319 and CYP106A2 from B. megaterium ATCC13368 in M. smegmatis mc2155 (ΔkshBΔkstD) cells. The recombinant plasmids contained monocistronic expression cassettes of cytochrome genes (pNS31 and pNS32), tricistronic cassettes of cytochrome genes together with cDNA copies of adrenodoxin and adrenodoxin reductase genes of the bovine adrenal cortex (pNS33 and pNS34), or monocistronic gene cassettes of chimeric cytochromes fused with the DNA sequence encoding the CYP116B2 reductase domain from the soil bacterium Rhodococcus sp. NCIMB 9784 (pNS35 and pNS36). The recombinant strains of mycolicibacteria were shown to selectively monohydroxylate androstenedione (AD) under growth conditions. The product was identified as 15β-hydroxyandrostenedione (15β-OH-AD) by mass spectrometry and 1H and 13C NMR spectroscopy. The maximum level of 15β-OH-AD production (17.3 ± 1.5 mg/L) was observed when using the recombinant M. smegmatis mc2155 (ΔkshBΔkstD) (pNS32) strain, which expresses a single cyp106A2 gene from B. megaterium ATCC13368. Host proteins of M. smegmatis mc2155 were shown to be capable of supplying electrons to heterologous cytochromes to support their hydroxylation activity. The results we obtained are of a priority character, expand the understanding of the hydroxylation of steroid compounds by bacterial cytochromes CYP106A1/A2, and are important for the creation of microbial strains for producing valuable hydroxysteroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Fegan, K.S., Rae, M.T., Critchley, H.O., et al., Antiinflammatory steroid signalling in the human peritoneum, J. Endocrinol., 2008, vol. 196, no. 2, pp. 369–376. https://doi.org/10.1677/joe-07-0419

    Article  CAS  Google Scholar 

  2. Ali Shah, S.A., Sultan, S., and Adnan, H.S., A whole-cell biocatalysis application of steroidal drugs, Orient. J. Chem., 2013, vol. 29, no. 2, pp. 389–403. https://doi.org/10.13005/ojc/290201

    Article  CAS  Google Scholar 

  3. Milecka-Tronina, N., Kolek, T., Swizdor, A., et al., Hydroxylation of DHEA and its analogues by Absidia coerulea AM93. Can an inducible microbial hydroxylase catalyze 7α- and 7β-hydroxylation of 5-ene and 5α-dihydro C19-steroids?, Bioorg. Med. Chem., 2014, vol. 22, no. 2, pp. 883–891. https://doi.org/10.1016/j.bmc.2013.11.050

    Article  CAS  Google Scholar 

  4. Wojtal, K., Trojnar, M.K., and Czuczwar, S.J., Endogenous neuroprotective factors: neurosteroids, Pharmacol. Rep., 2006, vol. 58, no. 3, pp. 335–340.

    CAS  Google Scholar 

  5. Reeder, A.Y. and Joannou, G.E., 15β-Hydroxysteroids (Part I). Steroids of the human perinatal period: the synthesis of 3β,15β,17α-trihydroxy-5-pregnen-20-one, Steroids, 1996, vol. 61, no. 2, pp. 74–81. https://doi.org/10.1016/0039-128x(95)00193-t

    Article  CAS  Google Scholar 

  6. Bernhardt, R., Cytochromes P450 as versatile biocatalysts, J. Biotechnol., 2006, vol. 124, no. 1, pp. 128–145. https://doi.org/10.1016/j.jbiotec.2006.01.026

    Article  CAS  Google Scholar 

  7. Kiss, F.M., Lundemo, M.T., Zapp, J., et al., Process development for the production of 15β-hydroxycyproterone acetate using Bacillus megaterium expressing CYP106A2 as whole-cell biocatalyst, Microb. Cell Fact., 2015, vol. 14, no. 1, p. 28. https://doi.org/10.1186/s12934-015-0210-z

    Article  CAS  Google Scholar 

  8. Kiss, F.M., Schmitz, D., Zapp, J., et al., Comparison of CYP106A1 and CYP106A2 from Bacillus megaterium—identifcation of a novel 11-oxidase activity, Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 20, pp. 8495–8514. https://doi.org/10.1007/s00253-015-6563-8

    Article  CAS  Google Scholar 

  9. Girhard, M., Klaus, T., Khatri, Y., et al., Characterization of the versatile monooxygenase CYP109B1 from Bacillus subtilis, Appl. Microbiol. Biotechnol., 2010, vol. 87, no. 2, pp. 595–607. https://doi.org/10.1007/s00253-010-2472-z

    Article  CAS  Google Scholar 

  10. Jóźwik, I.K., Kiss, F.M., Gricman, Ł., et al., Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from Bacillus megaterium. FEBS J., 2016, vol. 283, no. 22, pp. 4128–4148. https://doi.org/10.1111/febs.13911

    Article  CAS  Google Scholar 

  11. Bracco, P., Janssen, D.B., and Schallmey, A., Selective steroid oxyfunctionalisation by CYP154C5, a bacterial cytochrome P450, Microb. Cell Fact., 2013, vol. 12, no. 1, p. 95. https://doi.org/10.1186/1475-2859-12-95

    Article  CAS  Google Scholar 

  12. Litzenburger, M. and Bernhardt, R., CYP260B1 acts as 9α-hydroxylase for 11-deoxycorticosterone, Steroids, 2017, vol. 127, pp. 40–45. https://doi.org/10.1016/j.steroids.2017.08.006

    Article  CAS  Google Scholar 

  13. Makino, T., Katsuyama, Y., Otomatsu, T., et al., Regio- and stereospecifc hydroxylation of various steroids at the 16α position of the D ring by the Streptomyces griseus cytochrome P450 CYP154C3, Appl. Environ. Microbiol., 2014, vol. 80, no. 4, pp. 1371–1379. https://doi.org/10.1128/AEM.03504-13

    Article  CAS  Google Scholar 

  14. Dangi, B., Kim, K.H., Kang, S.H., et al., Tracking down a novel steroid hydroxylating promiscuous cytochrome P450, CYP154C8 from Streptomyces sp. W2233-SM, ChemBioChem, 2018, vol. 19, no. 10, pp. 1066–1077. https://doi.org/10.1002/cbic.201800018

    Article  CAS  Google Scholar 

  15. Agematu, H., Matsumoto, N., Fujii, Y., et al., Hydroxylation of testosterone by bacterial cytochromes P450 using the Escherichia coli expression system, Biosci. Biotech. Biochem., 2006, vol. 70, no. 1, pp. 307–311. https://doi.org/10.1271/bbb.70.307

    Article  CAS  Google Scholar 

  16. Zhang, X., Peng, Y., Zhao, J., et al., Bacterial cytochrome P450-catalyzed regio- and stereoselective steroid hydroxylation enabled by directed evolution and rational design, Bioresour. Bioprocess., 2020, vol. 7, p. 2. https://doi.org/10.1186/s40643-019-0290-4

    Article  Google Scholar 

  17. Kim, K.H., Lee, C.W., Dangi, B., et al., Crystal structure and functional characterization of a cytochrome p450 (BaCYP106A2) from Bacillus sp. PAMC 23377, J. Microbiol. Biotechnol., 2017, vol. 27, no. 8, pp. 1472–1482. https://doi.org/10.4014/jmb.1706.06013

    Article  CAS  Google Scholar 

  18. Schmitz, D., Zapp, J., and Bernhardt, R., Steroid conversion with CYP106A2 – production of pharmaceutically interesting DHEA metabolites, Microb. Cell. Fact., 2014, vol. 13, p. 81. https://doi.org/10.1186/1475-2859-13-81

    Article  CAS  Google Scholar 

  19. Schmitz, D., Janocha, S., Kiss, F.M., et al., CYP106A2—a versatile biocatalyst with high potential for biotechnological production of selectively hydroxylated steroid and terpenoid compounds, Biochim. Biophys. Acta, 2018, vol. 1866, no. 1, pp. 11–22. https://doi.org/10.1016/j.bbapap.2017.07.011

    Article  CAS  Google Scholar 

  20. Sagadin, T., Riehm, J.L., Milhim, M., et al., Binding modes of CYP106A2 redox partners determine differences in progesterone hydroxylation product patterns, Commun. Biol., 2018, vol. 1, p. 99. https://doi.org/10.1038/s42003-018-0104-9

    Article  CAS  Google Scholar 

  21. Snapper, S.B., Melton, R.E., Mustafa, S., et al., Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis, Mol. Microbiol., 1990, vol. 4, no. 11, pp. 1911–1919. https://doi.org/10.1111/j.1365-2958.1990.tb02040.x

    Article  CAS  Google Scholar 

  22. Strizhov, N., Fokina, V., Sukhodolskaya, G., et al., Progesterone biosynthesis by combined action of adrenal steroidogenic and mycobacterial enzymes in fast growing mycobacteria, New Biotechnol., 2014, vol. 31S, p. S67. https://doi.org/10.1016/j.nbt.2014.05.1766

    Article  Google Scholar 

  23. Felpeto-Santero, C., Galan, B., and Garcia, J.L., Production of 11α-hydroxysteroids from sterols in a single fermentation step by Mycolicibacterium smegmatis, Microbiol. Biotechnol., 2021, vol. 14, no. 6, pp. 2514‒2524. https://doi.org/10.1111/1751-7915.13735

    Article  CAS  Google Scholar 

  24. Loraine, J.K. and Smith, M.C.M., Genetic techniques for manipulation of the phytosterol biotransformation strain Mycobacterium neoaurum NRRL B-3805, Methods Mol. Biol., 2017, vol. 1645, pp. 93‒108. https://doi.org/10.1007/978-1-4939-7183-1_7

    Article  CAS  Google Scholar 

  25. Daugelat, S., Kowall, J., Mattow, J., et al., The RD1 proteins of Mycobacterium tuberculosis: expression in Mycobacterium smegmatis and biochemical characterization, Microbes Infect., 2003, vol. 5, no. 12, pp. 1082–1095. https://doi.org/10.1016/s1286-4579(03)00205-3

    Article  CAS  Google Scholar 

  26. Poulsen, C., Holton, S., Geerlof, A., et al., Stoichiometric protein complex formation and over expression using the prokaryotic native operon structure, FEBS Lett., 2010, vol. 584, pp. 669–674. https://doi.org/10.1016/j.febslet.2009.12.057

    Article  CAS  Google Scholar 

  27. Strizhov, N., Karpov, M., Sukhodolskaya, G., et al., Development of mycobacterial strains producing testosterone, Izv. Nats. Akad. Nauk Belarusi, Ser. Khim. Nauk, 2016, vol. 3, pp. 57‒58. https://vestichem.belnauka.by/jour/issue/viewIssue/11/2.

    Google Scholar 

  28. Karpov, M.V., Strizhov, N.I., Novikova, L.A., et al., Reconstruction of the cholesterol hydroxylase/lyase enzyme system of the bovine adrenal cortex in rapidly growing mycobacteria, Sbornik tezisov 19-oi Mezhdunarodnoi Pushchinskoi shkoly-konferentsii molodykh uchenykh “Biologiya—nauka 21 veka” (19th International Pushchino School-Conference for Young Scientists “Biology Is a Science of the 21st Century,” Abstracts of Papers), Pushch. Nauchn. Tsentr Ross. Akad. Nauk, Pushchino, 2015, vol. 237–238. https://www.spsl.nsc.ru/FullText/konfe/ITOG-2015.pdf.

    Google Scholar 

  29. Sabbadin, F., Hyde, R., Robin, A., et al., LICRED: a versatile drop-in vector for rapid generation of redoxself-sufficient cytochrome P450s, ChemBioChem, 2010, vol. 11, no. 7, pp. 987–994. https://doi.org/10.1007/978-1-62703-321-3_20

    Article  CAS  Google Scholar 

  30. Kollerov, V.V., Lobastova, T.G., Monti, D., et al., Deoxycholic acid transformations catalyzed by selected filamentous fungi, Steroids, 2016, vol. 107, pp. 20–29. https://doi.org/10.1016/j.steroids.2015.12.015

    Article  CAS  Google Scholar 

  31. Li, S., Du, L., and Bernhardt, R., Redox partners: function modulators of bacterial P450 enzymes, Trends Microbiol., 2020, vol. 28, no. 6, pp. 445–454. https://doi.org/10.1016/j.tim.2020.02.012

    Article  CAS  Google Scholar 

  32. Lisurek, M., Simgen, B., Antes, I., and Bernhardt, R., Theoretical and experimental evaluation of a CYP106A2 low homology model and production of mutants with changed activity and selectivity of hydroxylation, ChemBioChem, 2008, vol. 9, no. 9, pp. 1439–1449. https://doi.org/10.1002/cbic.200700670

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 21-64-00024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Fokina.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals performed by any of the authors.

This article does not contain any studies involving human participants performed by any of the authors outside the scope of their normal professional activities.

Additional information

Translated by I. Gordon

Abbreviations: AD, androst-4-ene-3,17-dione; ADD, androsta-1,4-diene-3,17-dione; AdR, adrenodoxin reductase; Adx, adrenodoxin; HPLC, high-performance liquid chromatography; MCD, methyl-β-cyclodextrin; MS, mass spectrometry; NMR, nuclear magnetic resonance; OD600, optical density at a wavelength of 600 nm; RBS, ribosome-binding site(s); TLC, thin-layer chromatography; 15β-OH-AD, androst-4-en-15β-ol-3,17-dione.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, M.V., Nikolaeva, V.M., Fokina, V.V. et al. Creation and Functional Analysis of Mycolicibacterium smegmatis Recombinant Strains Carrying the Bacillary Cytochromes CYP106A1 and CYP106A2 Genes. Appl Biochem Microbiol 58, 947–957 (2022). https://doi.org/10.1134/S0003683822090058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683822090058

Keywords:

Navigation