Log in

Cadaverine Biosynthesis in Escherichia сoli Adaptation to Hydrogen Peroxide

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

This study demonstrated the role of cadaverine in the adaptation of Escherichia coli to hydrogen peroxide. A dose-dependent increase in the expression of the ldcC and cadA genes that encode cadaverine-synthesizing enzymes was shown in cells exposed to exogenous hydrogen peroxide. An inverse relationship between bacterial sensitivity and the level of intracellular cadaverine at the time of hydrogen peroxide addition was found. Sensitivity to hydrogen peroxide also depended on the ability to synthesize cadaverine (via the ldcC and cadA genes). In particular, the death rate of cells that are incapable of synthesizing cadaverine was higher compared to cadaverine-producing cells. Sensitivity to hydrogen peroxide increased in a series of isogenic strains with the genotype: wild type < ΔcadA < ΔldcC < ΔldcCΔcadA. The role of the accumulation of reactive oxygen species, including hydrogen peroxide, in the activation of the ldcC and cadA genes in cells exposed to the antibiotic levofloxacin was also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Linley, E., Denyer, S.P., McDonnell, G., Simons, C., and Maillard, J.Y., J. Antimicrob. Chemother., 2012, vol. 67, no. 7, pp. 1589–1596.

    Article  CAS  Google Scholar 

  2. McEvoy, B. and Rowan, N.J., J. Appl. Microbiol., 2019, vol. 127, no. 5, pp. 1403–1420.

    Article  CAS  Google Scholar 

  3. McDonnell, G. and Russell, A.D., Clin. Microbiol. Rev., 1999, vol. 12, no. 1, pp. 147–179.

    Article  CAS  Google Scholar 

  4. Fichet, G., Antloga, K., Comoy, E., Deslys, J.P., and McDonnell, G., J. Hosp. Infect., 2007, vol. 67, no. 3, pp. 278–286.

    Article  CAS  Google Scholar 

  5. Kislenko, V.N. and Berlin, A.A., Russ. Chem. Rev., 1991, vol. 60, no. 5, pp. 470–488.

    Article  Google Scholar 

  6. González-Flecha, B. and Demple, B., J. Biol. Chem., 1995, vol. 70, no. 23, pp. 13681–13687.

    Article  Google Scholar 

  7. Mols, M. and Abee, T., Environ. Microbiol., 2011, vol. 13, no. 6, pp. 1387.

    Article  CAS  Google Scholar 

  8. Akhova, A.V., Sekatskaya, P.A., and Tkachenko, A.G., Appl. Biochem. Microbiol, 2019, vol. 55, pp. 582–587.

    Article  CAS  Google Scholar 

  9. Gu, M. and Imlay, J.A., Mol. Microbiol., 2011, vol. 79, no. 5, pp. 1136–1150.

    Article  CAS  Google Scholar 

  10. Imlay, J.A., Environ. Microbiol., 2019, vol. 21, no. 2, pp. 521–530.

    Article  CAS  Google Scholar 

  11. Khmelevtsova, L.E., Sazykin, I.S., Azhogina, T.N., and Sazykina, M.A., Appl. Biochem. Microbiol., 2020, vol. 56, no. 4, pp. 373–380.

    Article  CAS  Google Scholar 

  12. Sen, A. and Imlay, J.A., Front. Immunol., 2021, vol. 12, article ID 667343.

    Article  CAS  Google Scholar 

  13. Tkachenko, A.G. and Nesterova, L.Y., Biochemistry (Moscow), 2003, vol. 68, no. 8, pp. 850–856.

    CAS  PubMed  Google Scholar 

  14. Chattopadhyay, M.K., Tabor, C.W., and Tabor, H., Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, no. 5, pp. 2261–2265.

    Article  CAS  Google Scholar 

  15. Akhova, A., Nesterova, L., Shumkov, M., and Tkachenko, A., Res. Microbiol., 2021, vol. 172, no. 7, article ID 103881.

    Article  CAS  Google Scholar 

  16. Miller, J.H., Experiments in Molecular Genetics, New York: Cold Spring Harbor Laboratory, 1972.

    Google Scholar 

  17. Performance Standards for Antimicrobial Susceptibility Testing, CLSI Document M100-S24, Wayne, PA: Clinical and Laboratory Standards Institute, 2014, 30th ed., vol. 40, no. 1.

  18. Kikuchi, Y., Kurahashi, O., Nagano, T., and Kamio, Y., Biosci. Biotechnol. Biochem., 1998, vol. 62, no. 6, pp. 1267–1270.

    Article  CAS  Google Scholar 

  19. Wascher, T.C., Posch, K., Wallner, S., Hermetter, A., Kostner, G.M., and Graier, W.F., Biochem. Biophys. Res. Commun., 1997, vol. 234, no. 1, pp. 35–38.

    Article  CAS  Google Scholar 

  20. Olin-Sandoval, V., Yu, J.S.L., Miller-Fleming, L., Alam, M.T., Kamrad, S., Correia-Melo, C., et al., Nature, 2019, vol. 572, pp. 249–253.

    Article  CAS  Google Scholar 

  21. Godoy, M.S., Nikel, P.I., Cabrera Gomez, J.G., and Pettinari, M.J., Appl. Environ. Microbiol., 2015, vol. 82, no. 1, pp. 244–254.

    PubMed Central  Google Scholar 

  22. Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A., and Collins, J.J., Cell, 2007, vol. 130, no. 5, pp. 797–810.

    Article  CAS  Google Scholar 

  23. Akhova, A.V. and Tkachenko, A.G., FEMS Microbiol. Lett., 2014, vol. 353, no. 1, pp. 69–76.

    Article  CAS  Google Scholar 

  24. Randall, L.O., J. Biol. Chem., 1946, vol. 164, pp. 521–527.

    Article  CAS  Google Scholar 

  25. Anbar, M. and Neta, P., Int. J. Appl. Radiat. Isot., 1967, vol. 18, pp. 493–523.

    Article  CAS  Google Scholar 

  26. Gaboriau, F., Vaultier, M., Moulinoux, J., and Delcros, J., Redox Rep., vol. 10, pp. 9–18.

  27. Spirin, A. and Gavrilova, L., The Ribosome, New York: Springer-Verlag, 1969.

    Book  Google Scholar 

  28. Kojima, S., Kaneko, J., Abe, N., Takatsuka, Y., and Kamio, Y., J. Bacteriol., 2011, vol. 193, pp. 2347–2350. https://doi.org/10.1128/JB.00106-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Akhova, A.V. and Tkachenko, A.G., Korean J. Microbiol., 2020, vol. 56, pp. 103–110.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their sincere gratitude to Professor Bruce Demple (Stony Brook University Medical School, Stony Brook, NY) for providing the E. coli strain.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (АААА-А19-119112290009-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Akhova.

Ethics declarations

The authors declare they have no conflicts of interest. The studies were conducted without the use of animals and without involving people as subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhova, A.V., Tkachenko, A.G. Cadaverine Biosynthesis in Escherichia сoli Adaptation to Hydrogen Peroxide. Appl Biochem Microbiol 58, 582–589 (2022). https://doi.org/10.1134/S0003683822050039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683822050039

Keywords:

Navigation