Log in

Laminin 521 Modulates the Сytotoxic Effect of 5-Fluorouracil on HT29 Colorectal Cancer Cells

  • PRODUCERS, BIOLOGY, SELECTION, AND GENE ENGINEERING
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The cytotoxic effect of 5-fluorouracil (5FU) and regorafenib (RF), drugs with different mechanisms of action used to treat colorectal cancer, on an HT29 cell line cultured on plastic or laminin 521 (LM-521) has been studied. It is first shown that LM-521 can increase the sensitivity of tumor cells to 5FU. A possible mechanism of the observed effect of LM-521 on the HT29 cell viability is proposed based on transcriptome and proteome analysis. The interaction of β1-containing integrins on the cell surface with LM-521 can activate the FAK/PI3K/Akt signaling pathways and promote phosphorylation of the YAP transcription coactivator and its binding to the complex with the 14-3-3σ protein. The formation of this complex leads to YAP retention in the cytoplasm and prevents its transport to the nucleus and the activation of antiapoptotic gene transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Maltseva, D.V. and Rodin, S.A., Laminins in metastatic cancer, Mol. Biol., 2018, vol. 52, pp. 350–371.

    Article  CAS  Google Scholar 

  2. Leight, J.L., Drain, A.P., and Weaver, V.M., Extracellular Matrix remodeling and stiffening modulate tumor phenotype and treatment response, Ann. Rev. Cancer Biol., 2017, vol. 1, pp. 313–334.

    Article  Google Scholar 

  3. Galatenko, V.V., Maltseva, D.V., Galatenko, A.V., Rodin, S., and Tonevitsky, A.G., Cumulative prognostic power of laminin genes in colorectal cancer, BMC Med. Genomics, 2018, vol. 11, p. 9.

    Article  Google Scholar 

  4. Domogatskaya, A., Rodin, S., and Tryggvason, K., Functional diversity of laminins, Ann. Rev. Cell Dev. Biol., 2012, vol. 28, pp. 523–553.

    Article  CAS  Google Scholar 

  5. Marinkovich, M.P., Tumour microenvironment: laminin 332 in squamous-cell carcinoma, Nat. Rev. Cancer, 2007, vol. 7, pp. 370–380.

    Article  CAS  Google Scholar 

  6. Giannelli, G., Azzariti, A., Fransvea, E., Porcelli, L., Antonaci, S., and Paradiso, A., Laminin-5 offsets the efficacy of gefitinib (‘Iressa’) in hepatocellular carcinoma cells, Br. J. Cancer, 2004, vol. 91, pp. 1964–1969.

    Article  CAS  Google Scholar 

  7. Govaere, O., Wouters, J., and Petz, M., et al., Laminin-332 sustains chemoresistance and quiescence as part of the human hepatic cancer stem cell niche, J. Hepatol., 2016, vol. 64, pp. 609–617.

    Article  CAS  Google Scholar 

  8. Maltseva, D.V., Zakharova, G.S., Rodin, S.A., and Tonevitsky, A.G., The effect of laminins on chemoresistance of colorectal cancer cells, Russ. Chem. Bull., 2018, vol. 67, pp. 2148–2151.

    Article  CAS  Google Scholar 

  9. Rodin, S., Antonsson, L., Niaudet, C., et al., Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment, Nat. Commun., 2014, vol. 5, pp. 1–13.

    Article  Google Scholar 

  10. Rodin, S., Antonsson, L., Hovatta, O., and Tryggvason, K., Monolayer culturing and cloning of human pluripotent stem cells on laminin-521–based matrices under xeno-free and chemically defined conditions, Nat. Protoc., 2014, vol. 9, pp. 2354–2368.

    Article  CAS  Google Scholar 

  11. Maltseva, D.V., Makarova, J.A., Khristichenko, A.Y., Tsypina, I.M., Tonevitsky, E.A., and Rodin, S.A., Epithelial to mesenchymal transition marker in 2D and 3D colon cancer cell cultures in the presence of laminin 332 and 411, Mol. Biol., 2019, vol. 53, pp. 291–298.

    Article  CAS  Google Scholar 

  12. Longley, D.B., Harkin, D.P., and Johnston, P.G., 5-Fluorouracil: mechanisms of action and clinical strategies, Nat. Rev. Cancer, 2003, vol. 3, pp. 330–338.

    Article  CAS  Google Scholar 

  13. Wilhelm, S.M., Dumas, J., Adnane, L., Lynch, M., Carter, C.A., Schütz, G., Thierauch, K.-H., and Zop-f, D., Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity, Int. J. Cancer, 2011, vol. 129, pp. 245–255.

    Article  CAS  Google Scholar 

  14. Chen, D., Wei, L., Yu, J., and Zhang, L., Regorafenib inhibits colorectal tumor growth through PUMA-mediated apoptosis, Clin. Cancer Res., 2014, vol. 20, pp. 3472–3484.

    Article  CAS  Google Scholar 

  15. Mal'tseva, D.V., Makarova, Y.A., Raigorodskaya, M.P., and Rodin, S.A., Effects of laminins 332 and 411 on the epithelial-mesenchymal status of colorectal cancer cells, Bull. Exp. Biol. Med., 2019, vol. 166, pp. 377–382.

    Article  CAS  Google Scholar 

  16. Tonevitsky, A.G., Agapov, I.I., Shamshiev, A.T., Temyakov, D.E., Pohl, P., and Kirpichnikov, M.P., Immunotoxins containing A-chain of mistletoe lectin I are more active than immunotoxins with ricin A-chain, FEBS Lett., 1996, vol. 392, pp. 166–168.

    Article  CAS  Google Scholar 

  17. Ritz, C., Baty, F., Streibig, J.C., and Gerhard, D., Dose-response analysis using R, PLoS One, 2015, vol. 10. e0146021.

    Article  Google Scholar 

  18. Khaustova, N.A., Maltseva, D.V., Oliveira-Ferrer, L., Sturken, C., Milde-Langosch, K., Makarova, J.A., Rodin, S., Schumacher, U., and Tonevitsky, A.G., Selectin-independent adhesion during ovarian cancer metastasis, Biochimie, 2017, vol. 142, pp. 197–206.

    Article  CAS  Google Scholar 

  19. Krainova, N.A., Khaustova, N.A., Makeeva, D.S., Fedotov, N.N., Gudim, E.A., Ryabenko, E.A., Shkurnikov, M.U., Galatenko, V.V., Sakharov, D.A., and Maltseva, D.V., Evaluation of potential reference genes for qRT-PCR data normalization in HeLa cells, Appl. Biochem. Microbiol., 2013, vol. 49, pp. 743–749.

    Article  CAS  Google Scholar 

  20. Sakharov, D.A., Maltseva, D.V., Riabenko, E.A., Shkurnikov, M.U., Northoff, H., Tonevitsky, A.G., and Grigoriev, A.I., Passing the anaerobic threshold is associated with substantial changes in the gene expression profile in white blood cells, Eur. J. Appl. Physiol., 2012, vol. 112, pp. 963–972.

    Article  CAS  Google Scholar 

  21. Kudriaeva, A., Galatenko, V., Maltseva, D., Khaustova, N., Kuzina, E., Tonevitsky, A., Gabibov, A., and Belogurov, A., The transcriptome of type I murine astrocytes under interferon-gamma exposure and remyelination stimulus, Molecules, 2017, vol. 22, p. 808.

    Article  Google Scholar 

  22. Barsnes, H. and Vaudel, M., SearchGUI: A highly adaptable common interface for proteomics search and de novo engines, J. Proteome Res., 2018, vol. 17, pp. 2552–2555.

    Article  CAS  Google Scholar 

  23. Zhang, X., Abdelrahman, A., Vollmar, B., and Zechner, D., The ambivalent function of YAP in apoptosis and cancer, Int. J. Mol. Sci., 2018, vol. 19, p. 3770.

    Article  Google Scholar 

  24. Gill, S., Dowden, S., Colwell, B., Collins, L.L., and Berry, S., Navigating later lines of treatment for advanced colorectal cancer, Optimizing targeted biological therapies to improve outcomes, Cancer Treat. Rev., 2014, vol. 40, pp. 1171–1181.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The proteome analysis was carried out on the equipment of Human Proteome Center for Common Use (IBMKh).

Funding

The study was funded by the Russian Science Foundation (project no. 17-14-01338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Maltseva.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals performed by any of the authors.

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Translated by I. Gordon

Abbreviations: DMSO—dimethyl sulfoxide; DPBS—Dulbecco’s phosphate-buffered saline; DTT—1,4-dithiotreitol; ECM—extracellular matrix; FBS—fetal bovine serum; 5FU—5-fluorouracil; IC50—half-maximal inhibition of cell viability; LM-521—laminin 521; MTT—3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide; OD—optical density; RF—regorafenib; RIN—RNA integrity number; TCEP—Tris-(2-carboxyethyl)phosphine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raigorodskaya, M.P., Turchinovich, A., Tsypina, I.M. et al. Laminin 521 Modulates the Сytotoxic Effect of 5-Fluorouracil on HT29 Colorectal Cancer Cells. Appl Biochem Microbiol 56, 870–874 (2020). https://doi.org/10.1134/S0003683820080074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820080074

Keywords:

Navigation