Log in

Single Stage Purification of CRISPR/Cas13a Nuclease via Metal-Chelating Chromatography Following Heterologous Expression with the Preservation of Collateral Ribonuclease Activity

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

CRISPR/Cas13a nucleases are currently considered to be the basis for the development of a new generation of biosensors for the ultrasensitive, in-field detection of bacterial and viral pathogens. A recombinant Cas13a nuclease with functional affinity was obtained as a result of heterologous expression in E. coli with a single-step purification process via metal-chelating chromatography with the N-terminal polyhistidine tag. The simplified procedure of Cas13a nuclease purification broadens the possibilities for the development and practical application of diagnostic biosensing systems based on it. Moreover, our results indicate that the currently uncharacterized protein U2PWF1 of Leptotrichia wadei represents Cas13a nuclease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. van der Oost, J., Westra, E.R., Jackson, R.N., and Wiedenheft, B., Nat. Rev. Microbiol., 2014, vol. 12, no. 7, pp. 479–492.

    Article  CAS  Google Scholar 

  2. Koonin, E.V., Makarova, K.S., and Zhang, F., Curr. Opin. Microbiol., 2017, vol. 37, pp. 67–78.

    Article  CAS  Google Scholar 

  3. Hsu, P.D., Lander, E.S., and Zhang, F., Cell, 2014, vol. 157, no. 6, pp. 1262–1278.

    Article  CAS  Google Scholar 

  4. Abudayyeh, O.O., Gootenberg, J.S., Konermann, S., Joung, J., Slaymaker, I.M., Cox, D.B., Shmakov, S., Makarova, K.S., Semenova, E., Minakhin, L., Severinov, K., Regev, A., Lander, E.S., Koonin, E.V., and Zhang, F., Science, 2016, vol. 353, no. 6299, p. aaf5573.

    Article  Google Scholar 

  5. Pickar-Oliver, A. and Gersbach, C.A., Nat. Rev. Mol. Cell. Biol., 2019, vol. 20, no. 8, pp. 490–507.

    Article  CAS  Google Scholar 

  6. Abudayyeh, O.O., Gootenberg, J.S., Essletzbichler, P., Han, S., Joung, J., Belanto, J.J., Verdine, V., Cox, D.B.T., Kellner, M.J., Regev, A., Lander, E.S., Voytas, D.F., Ting, A.Y., and Zhang, F., Nature, 2017, vol. 550, no. 7675, pp. 280–284.

    Article  Google Scholar 

  7. Cox, D.B.T., Gootenberg, J.S., Abudayyeh, O.O., Franklin, B., Kellner, M.J., Joung, J., and Zhang, F., Science, 2017, vol. 358, no. 6366, pp. 1019–1027.

    Article  CAS  Google Scholar 

  8. Shmakov, S., Abudayyeh, O.O., Makarova, K.S., Wolf, Y.I., Gootenberg, J.S., Semenova, E., Minakhin, L., Joung, J., Konermann, S., Severinov, K., Zhang, F., and Koonin, E.V., Mol. Cell, 2015, vol. 60, no. 3, pp. 385–397.

    Article  CAS  Google Scholar 

  9. Tambe, A., East-Seletsky, A., Knott, G.J., Doudna, J.A., and O’Connell, M.R., Cell Rep., vol. 24, no. 4, pp. 1025–1036.

  10. East-Seletsky, A., O’Connell, M.R., Knight, S.C., Burstein, D., Cate, J.H., Tjian, R., and Doudna, J.A., Nature, 2016, vol. 538, no. 7624, pp. 270–273.

    Article  CAS  Google Scholar 

  11. Gootenberg, J.S., Abudayyeh, O.O., Lee, J.W., Essletzbichler, P., Dy, A.J., Joung, J., Verdine, V., Donghia, N., Daringer, N.M., Freije, C.A., Myhrvold, C., Bhattacharyya, R.P., Livny, J., Regev, A., Koonin, E.V., Hung, D.T., Sabeti, P.C., Collins, J.J., and Zhang, F., Science, 2017, vol. 356, no. 6336, pp. 438–442.

    Article  CAS  Google Scholar 

  12. Gootenberg, J.S., Abudayyeh, O.O., Kellner, M.J., Joung, J., Collins, J.J., and Zhang, F., Science, 2018, vol. 360, no. 6387, pp. 439–444.

    Article  CAS  Google Scholar 

  13. Kellner, M.J., Koob, J.G., Gootenberg, J.S., Abudayyeh, O.O., and Zhang, F., Nat. Protoc., 2019, vol. 14, no. 10, pp. 2986–3012.

    Article  CAS  Google Scholar 

  14. Myhrvold, C., Freije, C.A., Gootenberg, J.S., Abudayyeh, O.O., Metsky, H.C., Durbin, A.F., et al., Science, 2018, vol. 360, no. 6387, pp. 444–448.

    Article  CAS  Google Scholar 

  15. Li, Y., Li, S., Wang, J., and Liu, G., Trends Biotechnol., 2019, vol. 37, no. 7, pp. 730–743.

    Article  Google Scholar 

  16. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V., and Mann, M., Nat. Protoc., 2006, vol. 1, no. 6, pp. 2856–2860.

    Article  CAS  Google Scholar 

  17. Barsnes, H. and Vaudel, M., J. Proteome Res., 2018, vol. 17, no. 7, pp. 2552–2555.

    Article  CAS  Google Scholar 

  18. Vaudel, M., Burkhart, J.M., Zahedi, R.P., Oveland, E., Berven, F.S., Sickmann, A., Martens, L., and Barsnes, H., Nat. Biotechnol., 2015, vol. 33, no. 1, pp. 22–24.

    Article  CAS  Google Scholar 

  19. Bjornson, R.D., Carriero, N.J., Colangelo, C., Shifman, M., Cheung, K.H., Miller, P.L., and Williams, K., Proteome Res., 2008, vol. 7, no. 1, pp. 293–299.

    Article  CAS  Google Scholar 

  20. Kim, S. and Pevzner, P.A., Nat. Commun., 2014, vol. 5, p. 5277.

    Article  CAS  Google Scholar 

  21. Geer, L.Y., Markey, S.P., Kowalak, J.A., Wagner, L., Xu, M., Maynard, D.M., Yang, X., Shi, W., and Bryant, S.H., J. Proteome Res., 2004, vol. 3, no. 5, pp. 958–964.

    Article  CAS  Google Scholar 

  22. Zhu, H., Richmond, E., and Liang, C., Bioinformatics, 2018, vol. 34, no. 1, pp. 117–119.

    Article  CAS  Google Scholar 

  23. Zuker, M., Nucleic Acids Res., 2003, vol. 31, no. 13, pp. 3406–3415.

    Article  CAS  Google Scholar 

  24. Savinova, A.S., Koptev, E.Yu., Usachev, E.V., Tkachuk, A.P., and Gushchin, V.A., Vestn. RGMU, 2018, vol. 2, p. 21.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Yu.V Kotelevtsev (Skoltech) for the discussion of the possibilities of CRISPR detectors and I.Yu. Toropygin and V.G Zgoda (N.V. Orekhovich Institute of Biomedical Chemistry) for their assistance with mass-spectrometric analysis. In this work, we used the equipment of the Human Proteome Center for Collective Use (N.V. Orekhovich Institute of Biomedical Chemistry).

Funding

This study was supported by the Program of Fundamental Research for State Academies of Sciences for 2013–2020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. K. Kurbatov or S. P. Radko.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurbatov, L.K., Radko, S.P., Kravchenko, S.V. et al. Single Stage Purification of CRISPR/Cas13a Nuclease via Metal-Chelating Chromatography Following Heterologous Expression with the Preservation of Collateral Ribonuclease Activity. Appl Biochem Microbiol 56, 671–677 (2020). https://doi.org/10.1134/S0003683820060071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820060071

Keywords:

Navigation