Log in

Tectonic Structure and Evolution of the Lithosphere in the Near-Antarctic Part of the South Atlantic

  • MARINE GEOLOGY
  • Published:
Oceanology Aims and scope

Abstract

Based on an analysis of global digital models, the distribution of fracture zones of the oceanic crust, global and regional models of evolution, and published geological and geophysical data, the structural features of the ocean floor in the junction area of the Indian and Atlantic oceans are considered. Tectonic zoning of the region’s crust has been carried out. Heterogeneous blocks of the lithosphere with crust formed on different spreading ridges, separated by structural boundaries, which are pseudofaults, fixing traces of propagating rift zones, jum** and cessation of spreading ridges are identified. The main stages in the evolution of the lithosphere associated with the activation of plume magmatism and kinematic reorganizations of plate boundaries are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. E. P. Dubinin, N. M. Sushchevskaya, and A. L. Grokhol’skii, “The history of South Atlantics spreading ridges development and time – space position of Bouvet triple connection,” Ross. Zh. Nauk Zemle 1 (5), 423–443 (1999).

    Google Scholar 

  2. E. P. Dubinin, A. V. Kokhan, D. E. Teterin, et al., “Tectonics and types of riftogenic basins of the Scotia Sea, South Atlantic,” Geotectonics 50, 35–53 (2016).

    Article  CAS  Google Scholar 

  3. E. P. Dubinin, D. A. Ryzhova, A. I. Chupakhina, et al., “The structure of the lithosphere and formation conditions of submarine rises in the sub-Antarctic sector of south Atlantic based on density and physical modeling,” Geotectonics 57, 386–404 (2023).

    Article  Google Scholar 

  4. G. L. Leichenkov, N. M. Sushchevskaya, and B. V. Belyatskii, “Geodynamics of the Atlantic and Indian sectors of the Southern Ocean,” Dokl. Ross. Akad. Nauk 391 (5), 675–678 (2003).

    Google Scholar 

  5. E. N. Melankholina and N. M. Sushchevskaya, “Tectonics of the Southern Ocean passive margins in the Africa–East Antarctica region,” Geotectonics 53, 468–484 (2019).

    Article  CAS  Google Scholar 

  6. A. A. Peive, A. S. Perfil’ev, Yu. M. Pushcharovskii, et al., “Structure of the region of the southern end of the Mid-Atlantic Ridge (Bouvet Triple Junction),” Geotektonika, No. 1, 51–68 (1995).

    Google Scholar 

  7. Yu. M. Pushcharovskii, “Tectonics and geodynamics of the spreading ridges of the South Atlantic,” Geotektonika, No. 4, 41–52 (1998).

    Google Scholar 

  8. D. A. Ryzhova, M. V. Kosnyreva, E. P. Dubinin, and A. A. Bulychev, “The structure of the tectonosphere of the Meteor and Ailos Orcadas uplifts based on the results of the analysis of potential fields,” Geofiz. Issled. 23 (4), 5–22 (2022).

    Google Scholar 

  9. D. A. Ryzhova, A. I. Tolstova, E. P. Dubinin, et al., “Structure of the tectonosphere and conditions for the formation of the Mozambique ridge: Density and physical modeling,” Vestnik KRAUNTs. Nauki o Zemle 53 (1), 46–58 (2022).

  10. N. M. Sushchevskaya, E. V. Koptev-Dvornikov, A. A. Peive, et al., “Features of the crystallization process and geochemistry of tholeiitic magmas at the western end of the African-Antarctic Ridge (Spiess Ridge) in the area of the Bouvet Triple Junction,” Ross. Zh. Nauk Zemle 1 (3), 221–250 (1999).

    Google Scholar 

  11. N. M. Sushchevskaya, N. A. Migdisova, E. P. Dubinin, and B. V. Belyatskii, “Regional and local magmatic anomalies and tectonics of rift zones between the Antarctic and South American plates,” Geochem. Int. 54, 494–508 (2016).

    Article  CAS  Google Scholar 

  12. G. B. Udintsev, A. F. Beresnev, N. A. Kurentsova, et al., “Drake Passage and the Scotia Sea—the ocean gates of Western Antarctica,” in Structure and History of the Development of the Lithosphere. Russia’s Contribution to the International Polar Year (Paulsen, Moscow, 2010), Vol. 4, pp. 66–90.

  13. Z. Ben-Avraham, C. J. H. Hartnady, and A. P. Le Roex, “Neotectonic activity on continental fragments in the Southwest Indian Ocean: Agulhas Plateau and Mozambique Ridge,” J. Geophys. Res. 100 (B4), 6199–6211 (1995).

    Article  Google Scholar 

  14. M. C. Bradford and E. A. Hailwood, “Magnetostratigraphy of sediments from Sites 701 and 702,” Proceedings of the Ocean Drilling Program, Scientific Results 114, 359–366 (1991).

  15. C. Brenner and J. L. LaBrecque, “Bathymetry of the Georgia Basin and environs,” Proceedings of the Ocean Drilling Program, Initial Reports 114, 23–26 (1988).

  16. P. R. Ciesielski, Y. Kristoffersen, et al., “Leg 114,” Proceedings of the Ocean Drilling Program, Initial Reports 114 (1988).

  17. C. Class and A. Le Roex, “South Atlantic DUPAL Anomaly—Dynamic and compositional evidence against a recent shallow origin,” Earth Planet Sci. Lett. 305 (1–2), 92–102 (2011).

    Article  CAS  Google Scholar 

  18. C. DeMets, R. Gordon, and D. Argus, “Geologically current plate motions,” Geophys. J. Int. 181, 1–80 (2010).

    Article  Google Scholar 

  19. H. Dick, J. Lin, and H. Schouten, “An ultra-slow class of spreading ridge,” Nature 426, 405–412 (2003).

    Article  CAS  Google Scholar 

  20. R. V. Dingle and R. A. Scrutton, “Continental breakup and the development of post-Paleozoic sedimentary basins around southern Africa,” Geology 85, 1467–1474 (1974).

    Google Scholar 

  21. B. Dorschel, L. Jensen, J. E. Arndt, et al., “The Southwest Indian Ocean Bathymetric Compilation (SWIOBC),” Geochem. Geophys. Geosyst. 19 (3), 968–976 (2018).

    Article  Google Scholar 

  22. C. M. Doucoure and H. W. Bergh, “Continental origin of the Mozambique Plateau: A gravity data analysis,” J. Afr. Earth Sci. 15 (3–4), 311–319 (1992).

    Article  Google Scholar 

  23. J. Douglass, et al., “Small influence of the discovery and Shona mantle plumes on the southern Mid-Atlantic Ridge: Rare earth evidence,” Geophys. Res. Lett. 22 (21), 2893–2896 (1995).

    Article  CAS  Google Scholar 

  24. G. Eagles and W. Jokat, “Tectonic reconstructions for paleobathymetry in Drake Passage,” Tectonophysics 611, 28–50 (2014).

    Article  Google Scholar 

  25. G. Eagles and M. König, “A model of plate kinematics in Gondwana breakup,” Geophys. J. Int. 173, 703–717 (2008).

    Article  Google Scholar 

  26. A. J. Erlank and D. L. Reid, “Geochemistry, mineralogy, and petrology of basalts, LEG 25, Deep Sea Drilling Project,” Initial Reports of the Deep Sea Drilling Project (U.S. Government Printing Office, Washington, DC, 1974), Vol. 25, pp. 543–551.

    Google Scholar 

  27. M. D. Fischer, G. Uenzelmann-Neben, G. Jacques, and R. Werner, “The Mozambique Ridge: A document of massive multistage magmatism,” Geophys. J. Int. 208, 449–467 (2017).

    Article  CAS  Google Scholar 

  28. K. Gohl, G. Uenzelmann-Neben, and N. Grobys, “Growth and Dispersal of a Southeast African Large Igneous Province,” S. Afr. J. Geol. 114 (3–4), 379–386 (2011).

    Article  Google Scholar 

  29. S. W. Goodlad, A. K. Martin, and C. J. H. Hartnady, “Mesozoic magnetic anomalies in the southern Natal Valley, Nature 295, 686–688 (1982).

    Article  Google Scholar 

  30. R. Granot and J. Dyment, “The Cretaceous opening of the South Atlantic Ocean,” Earth Planet Sci. Lett. 414, 156–163 (2015).

    Article  CAS  Google Scholar 

  31. T. Hanyu, Y. Nogi, and M. Fujii, “Crustal formation and evolution processes in the Natal Valley and Mozambique Ridge, off South Africa,” Polar Sci. 13, 66–81 (2017).

    Article  Google Scholar 

  32. C. J. H. Hartnady, et al., “Seismotectonics of the Lwandle-Nubia plate boundary between South Africa and the Southwest Indian Ridge,” Geophys. Res. Abstracts 15, EGU2013–10203.

  33. K. Hoernle, et al., “Tectonic dissection and displacement of parts of Shona hotspot volcano 3500 km along the Agulhas–Falkland fracture zone,” Geology 44 (4), 263–266 (2016).

    Article  Google Scholar 

  34. G. Jacques, F. Hauff, K. Hoernle, et al., “Nature and origin of the Mozambique Ridge, SW Indian Ocean,” Chem. Geol. 509, 9–22 (2019).

    Article  Google Scholar 

  35. V. S. Kamenetsky, R. Maas, N. M. Sushchevskaya, et al., “Remnants of Gondwan continental lithosphere in oceanic upper mantle: Evidence from the South Atlantic Ridge,” Geology 29 (3), 243–246 (2001).

    Article  CAS  Google Scholar 

  36. M. König and W. Jokat, “The Mesozoic breakup of the Weddell Sea,” J. Geophys. Res. 111, B12102 (2006).

    Article  Google Scholar 

  37. M. König and W. Jokat, “Advanced insights into magmatism and volcanism of the Mozambique Ridge and Mozambique basin in the view of new potential field data,” Geophys. J. Int. 180 (1), 158–180 (2010).

    Article  Google Scholar 

  38. Y. Kristoffersen and J. Labrecque, “On the tectonic history and origin of the Northeast Georgia Rise,” Proceedings of the Ocean Drilling Program, Scientific Results 114, 23–38 (1991).

  39. J. L. LaBrecque and D. E. Hayes, “Seafloor spreading history of the Agulhas Basin,” Earth Planet. Sci. Lett. 45, 411–428 (1979).

    Article  Google Scholar 

  40. J. L. LaBrecque, P. F. Ciesielski, and B. Clement, “Leg 114,” Subantarctic South Atlantic. Ocean Drilling Program, Scientific Prospects, 14 (1987).

  41. V. T. Leinweber and W. Jokat, “Is there continental crust underneath the northern Natal Valley and the Mozambique Coastal Plains?,” Geophys. Res. Lett. 38, L14303 (2011).

    Article  Google Scholar 

  42. A. P. Le Roex, H. J. B. Dick, A. M. Reid, et al., “Petrology and geochemistry of basalts from the American-Antarctic Ridge, Southern Ocean: Implications for the westward influence of the Bouvet mantle plume,” Contrib. Mineral. Petrol. 90, 367–380 (1985).

    Article  CAS  Google Scholar 

  43. W. J. Ludwig, J. E. Nafe, E. S. W. Simpson, and S. Sacks, “Seismic refraction measurements on the Southeast African continental margin,” J. Geophys. Res. 73, 3707–3719 (1968).

    Article  Google Scholar 

  44. K. M. Marks and J. M. Stock, “Evolution of the Malvinas Plate south of Africa,” Mar. Geophys. Res. 22 (4), 289–302.

  45. K. M. Marks and A. A. Tikku, “Cretaceous reconstructions of East Antarctica, Africa and Madagascar,” Earth Planet. Sci. Lett. 186, 479–495 (2001).

    Article  CAS  Google Scholar 

  46. K. Matthews, R. Muller, P. Wessel, and J. Whittaker, “The tectonic fabric of the ocean basins,” J. Geophys. Res. 116, B12109 (2011).

    Article  Google Scholar 

  47. K. Matthews, et al., “Global plate boundary evolution and kinematics since the late Paleozoic,” Global and Planetary Change 146, 226–250 (2016).

    Article  Google Scholar 

  48. S. Maus, U. Barckhausen, H. Berkenbosch, et al., “EMAG2: A 2-arc min resolution Earth magnetic anomaly grid compiled from satellite, airborne, and marine magnetic measurements,” Geochem. Geophys. Geosyst. 10 (8), 12 (2009).

    Article  Google Scholar 

  49. B. Meyer, A. Chulliat, and R. W. Saltus, “Derivation and error analysis of the Earth magnetic anomaly grid at 2 arc min resolution version 3 (EMAG2v3),” Geochemistry 18, 4522–4537 (2017).

    Google Scholar 

  50. M. Moulin, et al., “Gondwana breakup: Messages from the north Natal Valley,” Terra Nova 32, 205–214 (2020).

    Article  Google Scholar 

  51. W. Jokat, “The initial Gondwana break-up: A synthesis based on new potential field data of the Africa–Antarctica Corridor,” Tectonophysics 750, 301–328 (2019).

    Article  Google Scholar 

  52. N. Parsiegla, K. Gohl, and G. Uenzelmann-Neben, “The Agulhas Plateau: Structure and evolution of a large igneous province,” Geophys. J. Int. 174, 336–350 (2008).

    Article  Google Scholar 

  53. L. Perez-Diaz and G. Eagles, “Constraining South Atlantic growth with seafloor spreading data,” Tectonics 33 (9), 1848–1873 (2014).

    Article  Google Scholar 

  54. C. A. Raymond, J. L. LaBrecque, and Y. Kristoffersen, “Islas Orcadas Rise and Meteor Rise: The tectonic and depositional history of two aseismic plateaus from sites 702, 703, and 704,” Proceedings of the Ocean Drilling Program, Scientific Results 114, 5–22 (1991).

  55. C. V. Reeves, et al., Insight Into the Eastern Margin of Africa from a new tectonic model of the Indian Ocean, Geol. Soc. Spec. Publ. London 431 (1), 299–323 (2016).

    Article  Google Scholar 

  56. M. Reznikov, Z. Ben-Avrahamb, C. Hartnady, and T. Niemie, “Structure of the Transkei Basin and Natal Valley, Southwest Indian Ocean, from seismic reflection and potential field data,” Tectonophysics 397, 127–141 (2005).

    Article  Google Scholar 

  57. P. C. Richards, P. Stone, G. S. Kimbell, et al., “Mesozoic magmatism in the Falkland Islands (South Atlantic) and their offshore sedimentary basin,” J. Pet. Geol. 36 (1), 61–74 (2013).

    Article  Google Scholar 

  58. D. T. Sandwell, R. D. Muller, W. H. F. Smith, et al., “New global marine gravity from CryoSat-2 and Jason-1 reveals buried tectonic structure,” Science 346 (6205), 65–67 (2014).

    Article  CAS  Google Scholar 

  59. C. M. Schimschal and W. Jokat, “The Falkland Plateau in the context of Gondwana breakup,” Gondwana Research 68, 108–115 (2019).

    Article  Google Scholar 

  60. F. Schmid and V. Schlindwein, “Microearthquake activity, lithospheric structure, and deformation modes at an amagmatic ultraslow spreading Southwest Indian Ridge segment,” Geochem. Geophys. Geosyst. 17, 2905–2921 (2016).

    Article  Google Scholar 

  61. A. Schwindrofska, K. Hoernle, F. Hauff, et al., “Origin of enriched components in the South Atlantic: Evidence from 40 Ma geochemical zonation of the discovery seamounts,” Earth Planet. Sci. Lett. 441, 167–177 (2016).

    Article  CAS  Google Scholar 

  62. M. Seton, et al., “Community infrastructure and repository for marine magnetic identifications,” Geochem. Geophys. Geosyst. 15 (4), 1629–1641 (2014).

    Article  Google Scholar 

  63. N. A. Simmons, S. C. Myers, G. Johannesson, and E. Matzel, “LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction,” J. Geophys. Res. 117, 28 (2012).

    Article  Google Scholar 

  64. D. S. Stamps, L. M. Flesch, E. Calais, and A. Ghosh, “Current kinematics and dynamics of Africa and the East African Rift System,” J. Geophys. Res. Solid Earth 119, 5161–5186 (2014).

    Article  Google Scholar 

  65. J. Standish, H. Dick, J. Peter, et al., “MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9–25°E): Major element chemistry and the importance of process versus source,” Geochemistry 9, Q05004 (2008).

  66. B. C. Storey and P. R. Kyle, “An active mantle mechanism for Gondwana breakup,” S. Afr. J. Geol. 100, 283–290 (1997).

    Google Scholar 

  67. G. Thompson, W. B. Bryan, F. A. Frey, et al., “Petrology, geochemistry and original tectonic setting of basalts from the Mozambique Basin and Ridge (DSDP sites 248, 249 and 250) and from the Southwest Indian Ridge (DSDP site 251),” Mar. Geol. 48, 175–195 (1982).

    Article  CAS  Google Scholar 

  68. A. Tikku, K. M. Marks, and L. C. Kovacs, “An Early Cretaceous extinct spreading center in the northern Natal Valley,” Tectonophysics 347, 87–108 (2002).

    Article  Google Scholar 

  69. T. H. Torsvik, S. Rousse, C. Labails, and M. A. Smethurst, “A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin,” Geophys. J. Int. 177 (3), 1315–1333 (2009).

    Article  Google Scholar 

  70. B. E. Tucholke, R. E. Houtz, and D. M. Barret, “Continental crust beneath the Agulhas Plateau, Southwest Indian Ocean,” J. Geophys. Res. 86 (BS), 3791–3806 (1981).

  71. C. Vérard, K. Flores, and G. Stampfli, “Geodynamic reconstructions of the South America–Antarctica plate system,” J. Geodyn. 53, 43–60 (2012).

    Article  Google Scholar 

  72. P. Weatherall, et al., “A new digital bathymetric model of the world’s oceans,” Earth Space Sci. 2, 331–345 (2015).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project nos. 22-27-00110, 16-17-10 139).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. P. Dubinin, A. V. Kokhan or N. M. Suschevskaya.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinin, E.P., Kokhan, A.V. & Suschevskaya, N.M. Tectonic Structure and Evolution of the Lithosphere in the Near-Antarctic Part of the South Atlantic. Oceanology 64, 81–95 (2024). https://doi.org/10.1134/S0001437024010053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437024010053

Keywords:

Navigation