Log in

Investigation of the Relationships between the Parameters of Lidar Echo Signals and Hydrooptical Characteristics in the Western Kara Sea

  • MARINE PHYSICS
  • Published:
Oceanology Aims and scope

Abstract

A shipborne lidar survey of the western Kara Sea was carried out. The study was performed as part of the first stage of cruise 89 of the R/V Akademik Mstislav Keldysh in September 2022. Simultaneously with the lidar survey, a set of accompanying hydrooptical and hydrological measurements was carried out. Joint statistical analysis of the obtained data made it possible to obtain regression relationships between the lidar attenuation coefficient, seawater beam attenuation coefficient, and diffuse attenuation coefficient. These regression relations are used to convert the spatial distribution of the lidar attenuation coefficient into the seawater beam attenuation coefficient values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. V. A. Artemiev, V. I. Burenkov, M. I. Vortman, et al., “Sea-truth measurements of ocean color: A new floating spectroradiometer and its metrology,” Oceanology 40 (1), 139–145 (2000).

    Google Scholar 

  2. V. A. Artemiev, V. R. Taskaev, and A. V. Grigoriev, “Autonomous transparent meter PUM-200,” in Modern Methods and Means of Oceanological Research (MSOI-2021). Materials of the XVII International Scientific and Technical Conference (Shirshov Inst. Oceanol. Russ. Acad. Sci., 2021), pp. 95–99.

  3. D. M. Bravo-Zhivotovskii, L. B. Gordeev, L. S. Dolin, and S. B. Mochenev, “Determination of absorption and scattering indicators of sea water according to some characteristics of the light field of artificial light sources,” in Hydrophysical and Hydro-Optical Studies in the Atlantic and Pacific Oceans, Ed. by A. S. Monin and K. S. Shifrin (Nauka, Moscow, 1974), pp. 153–158 [in Russian].

    Google Scholar 

  4. V. I. Burenkov, Yu. A. Goldin, V. A. Artemiev, and S. V. Sheberstov, “Optical characteristics of the Kara Sea derived from shipborne and satellite data,” Oceanology 50 (5), 675–687 (2010).

    Article  Google Scholar 

  5. V. I. Burenkov, S. V. Sheberstov, V. A. Artemiev, and V. R. Taskaev, “Estimation of measurement error of the seawater beam attenuation coefficient in turbid water of Arctic seas,” Light Eng. 27 (5), 103–107 (2019).https://doi.org/10.33383/2018-100

  6. V. A. Glukhov, Yu. A. Goldin, and M. A. Rodionov, “Method of internal waves registration by lidar sounding in case of waters with two-layer sratification of hydrooptical characteristics,” Fundam. Prikl. Gidrofiz. 14 (3), 86–97 (2021). https://doi.org/10.7868/S2073667321030084

  7. V. A. Glukhov, Yu. A. Goldin, and M. A. Rodionov, “Experimental estimation of the capabilities of the lidar PLD-1 for the registration of various hydro-optical irregularities of the sea water column,” Fundam. Prikl. Gidrofiz. 10 (2), 41–48 (2017).https://doi.org/10.7868/S207366731702006X

  8. D. I. Glukhovets, S. V. Sheberstov, O. V. Kopelevich, et al., “Measuring the sea water absorption factor using integrating sphere,” Light Eng. 26 (1), 120–126 (2018).

  9. Yu. A. Goldin, V. A. Glukhov, B. A. Gureev, and M. A. Rodionov, “Marine polarization lidar PLD-1,” in Proceedings of the All-Russian Conference “Applied Technologies of Hydroacoustics and Hydrophysics” (Shirshov Inst. Oceanol. Russ. Acad. Sci., 2016), No. 13, pp. 215–217.

  10. Yu. A. Goldin, D. I. Glukhovets, B. A. Gureev, et al., “Shipboard flow-through complex for measuring bio-optical and hydrological seawater characteristics,” Oceanology 60 (5), 713–720 (2020).

    Article  CAS  Google Scholar 

  11. G. P. Kokhanenko, I. E. Penner, and V. S. Shamanaev, “Lidar and in situ measurements of the optical parameters of water surface layers in Lake Baikal,” Atmos. Ocean. Opt. 24 (5), 478–486 (2011).

    Article  CAS  Google Scholar 

  12. M. A. Pavlova, D. I. Glukhovets, and V. D. Volodin, “Deck spectroradiometer for measuring remote sensing reflectance,” Oceanology 63 (Suppl. 1), S229–S238.https://doi.org/10.1134/S0001437023070147

  13. S. I. Pogosyan, A. M. Durgaryan, I. V. Konyukhov, et al., “Absorption spectroscopy of microalgae, cyanobacteria, and dissolved organic matter: Measurements in an integrating sphere cavity,” Oceanology 49, 866–871 (2009).

    Article  Google Scholar 

  14. K. S. Shifrin, Introduction to Ocean Optics (Gidrometeoioizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  15. O. A. Bukin, A. Y. Major, A. N. Pavlov, et al., “Measurement of the lightscattering layers structure and detection of the dynamic processes in the upper ocean layer by shipborne lidar,” Int. J. Remote Sens. 19 (4), 707–715 (1998). https://doi.org/10.1080/014311698215946

    Article  Google Scholar 

  16. P. Chen and D. Pan, “Ocean optical profiling in South China Sea using airborne LiDAR,” Remote Sens. 11, 1826 (2019). https://doi.org/10.3390/rs11151826

    Article  Google Scholar 

  17. V. I. Chernook, Yu. A. Goldin, A. N. Vasilyev, et al., “Oceanological monitoring of fishing areas using lidars,” in Proc. Laser Optics 2014, International Conference (IEEE Xplore, 2014), pp. 137–141.

  18. J. H. Churnside, “Review of profiling oceanographic lidar,” Opt. Eng. 53 (5), 051405 (2014). https://doi.org/10.1117/1.OE.53.5.051405

    Article  Google Scholar 

  19. J. H. Churnside, E. D. Brown, S. Parker-Stetter, et al., “Airborne remote sensing of a biological hot spot in the southeastern Bering Sea,” Remote Sens. 3 (3), 621–637 (2011). https://doi.org/10.3390/rs3030621

    Article  Google Scholar 

  20. J. H. Churnside and P. L. Donaghay, “Thin scattering layers observed by airborne lidar,” ICES J. Mar. Sci. 66 (4), 778–789 (2009). https://doi.org/10.1093/icesjms/fsp029

    Article  Google Scholar 

  21. J. H. Churnside, J. W. Hai, C. A. Hostetle, and A. J. Scarino, “Ocean backscatter profiling using high-spectral-resolution lidar and a perturbation retrieval,” Remote Sens. 10 (12), 2003 (2018). https://doi.org/10.3390/rs10122003

    Article  Google Scholar 

  22. J. H. Churnside, R. D. Marchbanks, J. H. Le, et al., “Airborne lidar detection and characterization of internal waves in a shallow fjord,” J. Appl. Remote Sens. 6 (1), 063611 (2012). https://doi.org/10.1117/1.JRS.6.063611

    Article  Google Scholar 

  23. J. H. Churnside and L. A. Ostrovsky, “Lidar observation of a strongly nonlinear internal wave train in the Gulf of Alaska,” Int. J. Remote Sens. 26 (1), 167–177 (2005). https://doi.org/10.1080/01431160410001735076

    Article  Google Scholar 

  24. B. L. Collister, R. C. Zimmerman, V. J. Hill, et al., “Polarized lidar and ocean particles: Insights from a mesoscale coccolithophore bloom,” Appl. Opt. 59 (15), 4650–4662 (2020). https://doi.org/10.1364/AO.389845

    Article  Google Scholar 

  25. D. I. Glukhovets and Y. A. Goldin, “Surface desalinated layer distribution in the Kara Sea determined by shipboard and satellite data,” Oceanologia 62 (3), 364–373 (2020). https://doi.org/10.1016/j.oceano.2020.04.002

    Article  Google Scholar 

  26. Y. A. Goldin, B. A. Gureev, and Y. I. Ventskut, “Shipboard polarized lidar for seawater column sounding,” Current Research on Remote Sensing, Laser Probing, and Imagery in Natural Waters SPIE 6615, 152–159 (2007). https://doi.org/10.1117/12.740466

    Article  Google Scholar 

  27. Y. A. Goldin, A. N. Vasilev, A. S. Lisovskiy, and V. I. Chernook, “Results of Barents Sea airborne lidar survey,” Current Research on Remote Sensing, Laser Probing, and Imagery in Natural Waters SPIE 6615, 126–136 (2007). https://doi.org/10.1117/12.740456

    Article  Google Scholar 

  28. H. R. Gordon, “Interpretation of airborne oceanic lidar: Effects of multiple scattering,” Appl. Opt. 21 (16), 2996–3001 (1982).

    Article  CAS  Google Scholar 

  29. H. R. Gordon, “Can the Lambert–Beer law be applied to the diffuse attenuation coefficient of ocean water?” Limnol. Oceanogr. 34 (8), 1389–1409 (1989).

    Article  Google Scholar 

  30. R. H. Grant and W. Gao, “Diffuse fraction of UV radiation under partly cloudy skies as defined by the Automated Surface Observation System (ASOS),” J. Geophys. Res.: Atmos. 108 (D2) (2003). https://doi.org/10.1029/2002JD002201

  31. F. E. Hoge, C. W. Wright, W. B. Krabill, et al., “Airborne lidar detection of subsurface oceanic scattering layers,” Appl. Opt. 27 (19), 3969–3977 (1988). https://doi.org/10.1364/AO.27.003969

    Article  CAS  Google Scholar 

  32. J. H. Lee, J. H. Churnside, R. D. Marchbanks, et al., “Oceanographic lidar profiles compared with estimates from in situ optical measurements,” Appl. Opt. 52 (4), 786–794 (2003). https://doi.org/10.1364/AO.52.000786

    Article  Google Scholar 

  33. Peituo Xu, Dong Liu, Yibing Shen, et al., “Design and validation of a shipborne multiple-field-of-view lidar for upper ocean remote sensing,” J. Quant. Spectrosc. Radiat. Transfer 254, 107201 (2020). https://doi.org/10.1016/j.jqsrt.2020.107201

    Article  CAS  Google Scholar 

  34. A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, et al., “Airborne polarized lidar detection of scattering layers in the ocean,” Appl. Opt. 40 (24), 4353–4364 (2001). https://doi.org/10.1364/AO.40.004353

    Article  CAS  Google Scholar 

  35. P. J. Werdell, B. A. Franz, S. W. Bailey, et al., “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52 (10), 2019–2037 (2013). doi 10,1364/AO,52,002019

  36. A. Yushmanova, S. Sheberstov, D. Glukhovets, and S. Pogosyan, “Numerical simulation of a light field structure in an integrating sphere via the Monte Carlo method,” Photonics 10 (5), 593 (2023). https://doi.org/10.3390/photonics10050593

    Article  CAS  Google Scholar 

  37. C. Zhong, P. Chen, and D. Pan, “An improved adaptive subsurface phytoplankton layer detection method for ocean lidar data,” Remote Sens. 13 (19), 3875 (2021). https://doi.org/10.3390/rs13193875

    Article  Google Scholar 

  38. Y. Zhou, Y. Chen, H. Zhao, et al., “Shipborne oceanic high-spectral-resolution lidar for accurate estimation of seawater depth-resolved optical properties,” Light: Sci. Appl. 11 (261) (2022). https://doi.org/10.1038/s41377-022-00951-0

Download references

ACKNOWLEDGMENTS

The authors thank V.A. Artemiev, S.K. Klimenko, M.A. Pavlova, and I.V. Sahling for assistance in carrying out contact measurements.

Funding

The lidar survey, processing of recorded lidar sounding data, and statistical analysis were carried out within the Shirshov Institute of Oceanology state assignment (No. FMWE-2021-0016). The obtaining and processing of related data were supported by the Russian Science Foundation (project no. 21-77-10 059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Glukhov.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glukhov, V.A., Goldin, Y.A., Glitko, O.V. et al. Investigation of the Relationships between the Parameters of Lidar Echo Signals and Hydrooptical Characteristics in the Western Kara Sea. Oceanology 63 (Suppl 1), S119–S130 (2023). https://doi.org/10.1134/S0001437023070044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437023070044

Keywords:

Navigation