Log in

Possible Seismogenic-Trigger Mechanism of Activation of Glacier Destruction, Methane Emission, and Climate Warming in Antarctica

  • MARINE GEOLOGY
  • Published:
Oceanology Aims and scope

Abstract

A seismogenic-trigger mechanism is proposed for the rapid activation of destruction of cover and shelf glaciers in West Antarctica at the end of the 20th and beginning of the 21st centuries, accompanied by release of methane from the underlying hydrate-bearing sedimentary rocks and consequent rapid climate warming. This mechanism is associated with the action of deformation waves in the lithosphere–asthenosphere system, resulting from large earthquakes occurring in the subduction zones surrounding Antarctica: Chile and Kermadec–Macquarie. Disturbances in the lithosphere are transmitted over long distances on the order of 3000 km, and their additional associated stresses, which reach Antarctica several decades after the earthquakes, leading to a decrease in the adhesion of glaciers to underlying rocks, accelerated sliding of glaciers and development of faults in them. This process, in turn, reduces pressure on the underlying gas-hydrate-bearing sedimentary layers, leading to methane emission and climate warming. This hypothesis leads to the conclusion that in the coming decades, glacier destruction and climate warming processes in Antarctica will speed up due to an unprecedented increase in the number of large earthquakes in South Pacific subduction zones in the late 20th and early 21st centuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. G. I. Barenblatt, L. I. Lobkovskii, and R. I. Nigmatulin, “Mathematical model of gas outflow from gas-saturated ice and gas hydrates,” Dokl. Earth Sci. 470 (4), 1046–1049 (2016).

  2. V. G. Bykov, “Prediction and observation of deformation waves of the Earth,” Geodin. Tektonofiz. 9 (3), 721–754 (2018).

    Article  Google Scholar 

  3. I. A. Garagash and L. I. Lobkovskii, “Deformation tectonic waves as a possible trigger mechanism for activation of methane emission in the Arctic,” Arktika: Ekol. Ekon. 11 (1), 42–50 (2021).

    Google Scholar 

  4. V. P. Epifanov, “Physical modeling of glacier movement regimes,” Sneg i Led 56 (3), 333–344 (2016).

    Google Scholar 

  5. I. A. Zotikov, Thermal Regime of the Ice Sheet of Antarctica (Gidrometeoizdat, Leningrad, 1977) [in Russian].

    Google Scholar 

  6. G. L. Leichenkov, Yu. B. Guseva, V. V. Gandyukhin, and S. V. Ivanov, The Structure of the Earth’s Crust and the History of the Geological Development of Sedimentary Basins in the Indo-Ocean Water Area of Antarctica (VNIIOkeangeologiya, St. Petersburg, 2015) [in Russian].

  7. L. I. Lobkovskii, “Possible seismogenic-trigger mechanism of sharp activation of methane emission and climate warming in the Arctic,” Arktika: Ekol. Ekon., No. 3 (39), 62–72 (2020).

  8. L. I. Lobkovskii and M. M. Ramazanov, “On the theory of double porosity filtration,” Dokl. RAN. Nauki Zemle 484 (3), 348–351 (2019).

    Google Scholar 

  9. L. I. Lobkovskii and M. M. Ramazanov, “Thermomechanical waves in the system elastic lithosphere – viscous asthenosphere,” Fluid Dyn., No. 5, 765–779 (2021).

  10. L. I. Lobkovskii and M. M. Ramazanov, “Generalized filtration model in a fractured-porous medium with low-permeability inclusions and its possible applications,” Izv. Phys. Solid Earth, No. No, 281–290 (2022).

    Article  Google Scholar 

  11. A. Baranov, A. Morelli, and A. Chuvaev, “ANTASed—An updated sediment model for Antarctica,” Front. Earth Sci. 9, 722699 (2021).

    Article  Google Scholar 

  12. A. Baranov and A. Morelli, “The structure of sedimentary basins of Antarctica and a new three-layer sediment model,” Tectonophysics 846, 299–313 (2023).

  13. A. Baranov and A. Morelli, “The Moho depth map of the Antarctica region,” Tectonophysics 609, 299–313 (2013).

  14. A. Baranov, R. Tenzer, and M. Bagherbandi, “Combined gravimetric–seismic crustal model for Antarctica,” Surv. Geophys. 39, 23–56 (2018).

  15. S. Cesca, M. Sugan, L. Rudzinski, et al., “Massive earthquakes swarm driven by magmatic intrusion at the Bransfield Strait, Antarctica,” Commun. Earth Environ. 3, 89 (2022).

    Article  Google Scholar 

  16. F. D. W. Christie, T. J. Benham, C. L. Batchelor, et al., “Antarctic ice-shelf advance driven by anomalous atmospheric and sea-ice circulation,” Nat. Geosci. 15, 356–362 (2022).

    Article  Google Scholar 

  17. Climate at a Glance: Global Time Series. NOAA N-ational Centers for Environmental information www.ncei.noaa.gov/cag/. Accessed July 8, 2022.

  18. A. J. Cook and D. G. Vaughan, “Overview of areal changes of the ice shelves on the Antarctic peninsula over the past 50 years,” Cryosphere 4, 77–98 (2010).

    Article  Google Scholar 

  19. S. Danesi and A. Morelli, “Structure of the upper mantle under the Antarctic Plate from surface wave tomography,” Geophys. Res. Lett. 28, 4395–4398 (2001).

    Article  Google Scholar 

  20. E. Domack, S. Ishman, A. Leventer, et al., “A chemotrophic ecosystem found beneath Antarctic Ice Shelf,” Eos Trans. AGU 86 (29), 269–272 (2005).

    Article  Google Scholar 

  21. W. V. Elsasser, “Convection and stress propagation in the upper mantle,” in The Application of Modern Physics To the Earth and Planetary Interiors, Ed. by S. K. Runcorn (John Wiley, New York, 1969).

    Google Scholar 

  22. P. Fretwell, H. D. Pritchard, D. G. Vaughan, et al., “Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica,” Cryosphere 7, 375–393 (2013).

    Article  Google Scholar 

  23. T. Lay and H. Kanamori, “An asperity model of large earthquake sequences,” in Earthquake Prediction: An International Review, Ed. by D. W. Simpson and P. G. Richards (AGU, Washington, DC, 1981).

    Google Scholar 

  24. T. Lay, “The surge of great earthquakes from 2004 To 2014,” Earth Planet. Sci. Lett. 409, 133–146 (2015).

    Article  Google Scholar 

  25. L. Lobkovsky, “Seismogenic-triggering mechanism of gas emission activizations on the Arctic Shelf and associated phases of abrupt warming,” Geosciences 10, 428 (11) (2020).

  26. L. I. Lobkovsky, A. A. Baranov, M. M. Ramazanov, I. S. Vladimirova, Y. V. Gabsatarov, I. P. Semiletov, and D. A. Alekseev, “Trigger mechanisms of gas hydrate decomposition, methane emissions, and glacier breakups in polar regions as a result of tectonic wave deformation,” Geosciences 12 (10), 372 (2022).

  27. M. Lösing, J. Ebbing, and W. Szwillus, “Geothermal heat flux in Antarctica: Assessing models and observations by Bayesian inversion,” Front. Earth Sci. 8, 105 (2020).

    Article  Google Scholar 

  28. G. J. Marshall, A. Orr, N. P. M. van Lipzig, et al., “The impact of a Changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures,” J. Clim. 19, 5388–5404 (2006).

    Article  Google Scholar 

  29. H. J. Melosh, “Nonlinear stress propagation in the Earth’s upper mantle,” J. Geophys. Res. 32 (81), 5621–5632 (1976).

    Article  Google Scholar 

  30. A. J. Meuler, J. D. Smith, K. K. Varanasi, et al., “Relationships between water wettability and ice adhesion,” Appl. Mater. Interfaces, Am. Chem. Soc. 2 (11), 3100–3110 (2010).

    Google Scholar 

  31. A. Morelli and S. Danesi, “Seismological imaging of the Antarctic continental lithosphere: A review,” Global Planet. Change 42, 155–165 (2004).

    Article  Google Scholar 

  32. T. A. Scambos, J. A. Bohlander, C. A. Shuman, et al., “Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica,” Geophys. Res. Lett. 31, L18402 (2004).

    Article  Google Scholar 

  33. J. Smith, C.-D. Hillenbrand, C. Subt, et al., “History of the Larsen C ice shelf reconstructed from sub-ice shelf and offshore sediments,” Geology 49 (8), 978–982 (2021).

    Article  Google Scholar 

  34. E. O. Straume, C. Gaina, S. Medvedev, et al., “GlobSed: Updated total sediment thickness in the world’s oceans,” Geochem., Geophys., Geosyst. 20, 1756–1772 (2019).

    Article  Google Scholar 

  35. A. R. Thurber, S. Seabrook, and R. M. Welsh, “Riddles in the cold: Antarctic endemism and microbial succession impact methane cycling in the Southern Ocean,” Proc. R. Soc. B, Biol. Sci. 287, 20201134 (2020).

    Article  Google Scholar 

  36. J. L. Wadham, S. Arndt, S. Tulaczyk, et al., “Potential methane reservoirs beneath Antarctica,” Nature 488, 633–637 (2012).

    Article  Google Scholar 

  37. S. Wang, H. Liu, K. Jezek, et al., “Controls on Larsen C Ice Shelf retreat from a 60-year satellite data record,” J. Geophys. Res.: Earth Surf. 127, e2021JF006346 (2022).

  38. J. D. Wille, V. Favier, N. C. Jourdain, et al., “Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula,” Commun. Earth Environ. 3, 90 (2022).

    Article  Google Scholar 

Download references

Funding

The study was partly carried out under the state task of the Shirshov Institute of Oceanology, RAS, (no. FMWE-2021-0004) and partly under the state task of the Schmidt Institute of Physics of the Earth, RAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. I. Lobkovsky or Y. V. Gabsatarov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobkovsky, L.I., Baranov, A.A., Vladimirova, I.S. et al. Possible Seismogenic-Trigger Mechanism of Activation of Glacier Destruction, Methane Emission, and Climate Warming in Antarctica. Oceanology 63, 131–140 (2023). https://doi.org/10.1134/S000143702301006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143702301006X

Keywords:

Navigation