Log in

Spring Picophytoplankton of the Kara Sea

  • MARINE BIOLOGY
  • Published:
Oceanology Aims and scope

Abstract

The abundance, biomass, chlorophyll “a” concentration of picophytoplankton, contribution of picoalgae to total chlorophyll “a” and species composition of phototrophic picoeukaryotes (cells size less than 3 µm) were studied during 83 cruise of R/V Akademik Mstislav Keldysh in the Kara Sea in June 2021. The picophytoplankton abundance varied from 0.25 to 4.91 × 109 cell/m3, biomass–from 0.34 to 2.49 mg С/m3. The minimum abundance and biomass were found in the areas adjacent to the ice edge. The contribution of picophytoplankton to total chlorophyll a concentration in photic layer varied from 3 to 28% with maximum found in the stations free of ice more than 5 days. Picophytoplankton was represented by picoeukaryotes and cyanobacteria. The cyanobacteria contribution was low and varied from 0.2 to 1.8%. The Illumina sequencing of V4 region of 18S rRNA gene revealed that in the surface layer Chaetoceros socialis dominated in picoeukaryotes near ice edge during the diatom bloom. In the ice-free areas for more than 5 days small flagellates, such as Micromonas polaris, Phaeocystis pouchetii and Pyramimonas diskoicola, begin to develop in the surface layer after large phytoplankton descends to the lower horizon of upper mixed layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. T. A. Belevich, L. V. Il’yash, I. A. Milyutina, et al., “Phototrophic picoeukaryotes of Onega Bay, the White Sea: Abundance and species composition,” Moscow Univ. Ser. Biol. Si. Bull. 72, 109–114-134 (2017).

  2. T. A. Belevich, L. V. Ilyash, A. B. Demidov, et al., “Picophytoplankton distribution at the Ob River section and in the Western part of the Kara Sea,” Oceanology 59, 871–880 (2019).

    Article  Google Scholar 

  3. T. A. Belevich, I. A. Milyutina, A. V. Troitsky, et al., “Picophytoplankton in Blagopoluchia bay (Novaya Zemlya Archipelago) and adjacent part of the Kara Sea,” Oceanology 60, 473–482 (2020).

    Article  Google Scholar 

  4. T. A. Belevich and I. A. Milyutina, “Species diversity of phototrophic picoplankton in the Kara and Laptev Seas,” Mikrobiol. 91, 67–76 (2022).

    Google Scholar 

  5. A. B. Demidov, V. M. Sergeeva, V. I. Gagarin, et al., “Size-fractionated primary production and chlorophyll in the Kara Sea during the first-year ice retreat,” Oceanology 62, 346–357 (2022).

    Article  Google Scholar 

  6. A. D. Dobrovol’skii and B. S. Zalogin, Seas of the USSR (Izd. Mosk. Gos. Univ., Moscow, 1982) [in Russian].

    Google Scholar 

  7. A. G. Zatsepin, P. O. Zavyalov, V. V. Kremenetsky, et al., “Surface desalinated slay in the Kara Sea,” Okeanologiya 50, 698–708 (2010).

    Google Scholar 

  8. A. F. Sazhin, S. A. Mosharov, N. D. Romanova, et al., “The plankton community of the Kara Sea in early spring,” Oceanology 57, 222–224 (2017).

    Article  Google Scholar 

  9. V. M. Sergeeva, I. N. Sukhanova, E. I. Druzhkova, et al., “The structure and distribution of the phytoplankton community in the deep region of the Northern Kara Sea,” Oceanology 56, 107–13 (2016).

    Article  Google Scholar 

  10. I. N. Sukhanova, M. V. Flint, S. A. Mosharov, et al., “Structure of the phytoplankton communities and primary production in the Ob River estuary and over the adjacent Kara Sea shelf,” Oceanology 50, 743–758 (2010).

    Article  Google Scholar 

  11. I. N. Sukhanova, M. V. Flint, V. M. Sergeeva, et al., “Phytoplankton of the south-western part of the Kara Sea,” Oceanology 51, 978–992 (2011).

    Article  Google Scholar 

  12. I. N. Sukhanova, M. V. Flint, and V. M. Sergeeva, “Phytoplankton of the surface desalted lens of the Kara Sea,” Oceanology 52, 635–645 (2012).

    Article  Google Scholar 

  13. I. N. Sukhanova, M. V. Flint, E. I. Druzhkova, et al, “Phytoplankton in the northwestern Kara Sea,” Oceanology 55, 547–560 (2015).

    Article  Google Scholar 

  14. V. Yu. Fedulov, N. A. Belyaev, A. N. Kolokolova, and A. F. Sazhin, “Base geochemical parameters of the upper layer of waters of the southwestern Kara Sea in the winter period of 2018,” Okeanol. Issled. 46, 115–122 (2018).

    Google Scholar 

  15. M. V. Flint, “Cruise 54th of the research vessel  Akademik Mstislav Keldysh in the Kara Sea,” Oceanology 50, 637–642 (2010).

    Article  Google Scholar 

  16. N. S. R. Agawin, C. M. Duarte, and S. Agusti, “Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production,” Limnol. Oceanogr. 45, 1891–1899 (2000).

    Article  Google Scholar 

  17. E. J. Arar and G. B. Collins, in Method 445.0. in Vitro Determination of Chlorophyll “a” and Pheophytin “a” In Marine and Freshwater Algae by Fluorescence, Rev. 1.2.) (U.S. Environ. Protection Agency, Cincinnati, 1997).

  18. M. Ardyna, M. Babin, M. Gosselin, et al., “Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms,” Geophys. Rev. Lett. 41, 6207–6212 (2014).https://doi.org/10.1002/2014GL061047

    Article  Google Scholar 

  19. M. Ardyna, C. J. Mundy, M. M. Mills, et al., “Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean,” Elem. Sci. Anth. 8, 30 (2020).https://doi.org/10.1525/elementa.430

    Article  Google Scholar 

  20. K. R. Arrigo, D. K. Perovich, R. S. Pickart, et al., “Massive phytoplankton blooms under Arctic Sea ice,” Science 336, 1408 (2012).

    Article  Google Scholar 

  21. S. Balzano, D. Marie, P. Gourvil, and D. Vaulot, “Composition of the summer photosynthetic pico and nanoplankton communities in the Beaufort Sea assessed by T-RFLP and sequences of the 18S RRNA gene from flow cytometry sorted samples,” ISME J. 6, 1480–1498 (2012).

    Article  Google Scholar 

  22. T. A. Belevich, L. V. Ilyash, I. A. Milyutina, et al., “Photosynthetic picoeukaryotes in the land-fast ice of the White Sea, Russia,” Microb. Ecol. 75, 582–597 (2018).

    Article  Google Scholar 

  23. B. J. Callahan, P. J. McMurdie, M. J. Rosen, et al., “Bioconductor workflow for microbiome data analysis: from raw reads to community analyses,” F1000Research 5, 1492–1541 (2016).

    Article  Google Scholar 

  24. E. C. Carmack, W. Williams, S. Zimmerman, et al., “The Arctic Ocean warms from below, Geophys. Rev. Lett. 39, L07604 (2012).https://doi.org/10.1029/2012GL050890

  25. J. C. Comiso and D. K. Hall, “Climate trends in the Arctic,” WIREs Clim. Change 5, 389–409 (2014).

    Article  Google Scholar 

  26. M. T. Cottrell and D. L. Kirchman, “Photoheterotrophic microbes in the Arctic Ocean in summer and winter,” Appl. Environ. Microbiol. 75 (15), 4958–4966 (2009).

    Article  Google Scholar 

  27. M. D. DuRand, R. J. Olson, and S. W. Chisholm, “Phytoplankton population dynamics at the Bermuda Atlantic time-series station in the Sargasso Sea,” Deep-Sea Res. II 48, 1983–2003 (2001).

    Article  Google Scholar 

  28. V. V. Gordeev, J. M. Martin, I. S. Sidorov, and M. V. Sidorova, “A reassessment of the Eurasian river input of water, sediment, major elements and nutrients to the Arctic Ocean,” Am. J. Sci. 296, 664–691 (1996).

    Article  Google Scholar 

  29. R. Gradinger and J. Lenz, “Seasonal occurrence of picocyanobacteria in the Greenland Sea and Central Arctic Ocean,” Polar Biol. 15, 447–452 (1995).https://doi.org/10.1007/BF00239722

    Article  Google Scholar 

  30. K. Grasshoff, K. Kremling, and M. Ehrhardt, Methods of Seawater Analysis (Wiley, New York, 1999), 3rd ed.

    Book  Google Scholar 

  31. S. Harðardóttir, N. Lundholm, Ø. Moestrup, et al., “Description of Pyramimonas Diskoicola Sp. Nov. and the importance of the Flagellate Pyramimonas (Prasinophyceae) in Greenland Sea Ice during the winter-spring transition,” Polar Biol. 37, 1479–1494 (2014).https://doi.org/10.1007/s00300-014-1538-2

  32. R. M. Holmes, J. W. McClelland, B. J. Peterson, et al., “Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas,” Estuaries and Coasts 35, 369–382 (2012).

    Article  Google Scholar 

  33. S. Huang, S. W. Wilhelm, R. Harvey, et al., “Novel lineages of Prochlorococcus and Synechococcus in the global oceans,” ISME J. 6, 285–297 (2012).

    Article  Google Scholar 

  34. V. Le Fouest, M. Babin, and J.-É. Tremblay, “The fate of riverine nutrients on Arctic shelves,” Biogeosciences 10, 3661–3677 (2013).

    Article  Google Scholar 

  35. R. W. Macdonald, T. Harner, and J. Fyfe, “Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data,” Sci. Total Environ. 342, 5–86 (2005).

    Article  Google Scholar 

  36. Z. P. Mei, L. Legendre, Y. Gratton, et al., “Phytoplankton production in the north water polynya: size-fractions and carbon fluxes, April to July 1998,” Mar. Ecol.: Proc. Ser. 256, 13–27 (2003).

    Article  Google Scholar 

  37. S. Y. van der Staay, R. De Wachter, and D. Vaulot, “Oceanic 18S RDNA sequences from picoplankton reveal unsuspected eukaryotic diversity,” Nature 409, 607–610 (2001).

    Article  Google Scholar 

  38. X. A. G. Moran, A. Lopez-Urrutia, A. Calvo-Diaz, et al., “Increasing importance of small phytoplankton in a warmer ocean,” Glob. Change Biol. 16, 1137–1144 (2010).

    Article  Google Scholar 

  39. A. A. Osadchiev, D. Frey, S. A. Shchuka, et al., “Structure of the freshened surface layer in the Kara Sea during ice-free periods,” J. Geophys. Res. Oceans 126 (2021).https://doi.org/10.1029/2020JC016486

  40. B. V. Parli, J. T. Bhaskar, S. Jawak, et al., “Mixotrophic plankton and Synechococcus distribution in waters around Svalbard, Norway during June 2019,” Polar Sci. 30, 100697 (2021).

    Article  Google Scholar 

  41. B. J. Peterson, R. H. Holmes, J. W. McClelland, et al., “Increasing river discharge to the Arctic Ocean,” Science 289, 2171–2173 (2002).

    Article  Google Scholar 

  42. S. Pesant, L. Legendre, M. Gosselin, et al., “Size-differential regimes of phytoplankton production in the Northeast Water Polynya (77°–81° N),” Mar. Ecol.: Proc. Ser. 142, 75–86 (1996).

    Article  Google Scholar 

  43. C. G. Ribeiro, A. Lopes Dos Santos, P. Gourvil, et al.” Culturable diversity of Arctic phytoplankton during pack ice melting,” Elem. Sci. Anth. 8, 6 (2020).https://doi.org/10.1525/elementa.401

    Article  Google Scholar 

  44. E. B. Sherr, B. F. Sherr, P. A. Wheeler, et al., “Temporal and spatial variation in stocks ofautotrophic and heterotrophic microbes in the upper water column of the Central Arctic Ocean,” Deep-Sea Res. I 50, 557–571 (2003).

    Article  Google Scholar 

  45. J. M. Sieburth, V. Smetacek, and J. Lenz, “Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationships to plankton size fractions,” Limnol. Oceanogr. 23, 1256–1263 (1978).

    Article  Google Scholar 

  46. A. G. Simo-Matchim, M. Gosselin, M. Poulin, et al., “Summer and fall distribution of phytoplankton in relation to environmental variables in Labrador Fjords, with special emphasis on Phaeocystis Pouchetii,” Mar. Ecol.: Proc. Ser. 572, 19–42 (2017).

    Article  Google Scholar 

  47. W. Smith, L. Codispoti, D. Nelson, et al., “Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle,” Nature 352, 514–516 (1991).https://doi.org/10.1038/352514a0

    Article  Google Scholar 

  48. N. Sorensen, N. Daugbjerg, and K. Richardson, “Choice of pore size can introduce artefacts when filtering picoeukaryotes for molecular biodiversity studies,” Microb. Ecol. 65, 964–968 (2013).

    Article  Google Scholar 

  49. J. Stroeve and D. Notz, “Changing state of Arctic Sea ice across all seasons,” Environ. Res. Lett. 13, 103001 (2018).https://doi.org/10.1088/1748-9326/aade56

    Article  Google Scholar 

  50. L. Tedesco, M. Vichi, and E. Scoccimarro, “Sea-ice algal phenology in a warmer Arctic,” Sci. Adv. 5, eaav4830 (2019).

  51. M. Tragin and D. Vaulot, “Novel dversity within marine Mamiellophyceae (Chlorophyta) unveiled by metabarcoding,” Sci. Rep. 9, 5190 (2019).

    Article  Google Scholar 

  52. J. É. Tremblay, D. Robert, D. E. Varela, et al., “Current state and trends in Canadian Arctic marine ecosystems: I. Primary production,” Climatic Change 115, 161–178 (2012).https://doi.org/10.1007/s10584-012-0496-3

    Article  Google Scholar 

  53. D. Vaulot, W. Eikrem, M. Viprey, and H. Moreau, “The diversity of small eukaryotic phytoplankton (≤3 µm) in marine ecosystems,” FEMS Microbiol. Rev. 32, 795–820 (2008).

    Article  Google Scholar 

  54. P. G. Verity, C. Y. Robertson, C. R. Tronzo, et al., “Relationship between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton,” Limnol. Oceanogr. 37, 1434–1446 (1992).

    Article  Google Scholar 

  55. P. Voosen, “New feedbacks speed up the demise of Arctic Sea ice,” Science 369, 1043–1044 (2020).https://doi.org/10.1126/science.369.6507.1043

    Article  Google Scholar 

  56. M. Waleron, K. Waleron, W. F. Vincent, et al., “Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean,” FEMS Microbiol. Ecol. 56, 356–365 (2007).

    Article  Google Scholar 

  57. F. Zhang, J. He, L. Lin, and H. **, “Dominance of picophytoplankton in the newly open surface water of the Central Arctic Ocean,” Polar Biol. 38, 1081–1089 (2015).https://doi.org/10.1007/s00300-015-1662-7

    Article  Google Scholar 

  58. F. Zhu, R. Massana, F. Not, et al., “Map** of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S RRNA gene,” FEMS Microbiol. Ecol. 52, 79–92 (2005).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank A.A. Polukhin and S.A. Shchuka for providing the materials on the hydrophysical and hydrochemical data.

Funding

The work was carried out as part of Moscow State University’s project (topic nos. 121032300135-7 and AAAA-A17-117120540067-0) and the Development Program of the Interdisciplinary Scientific and Educational School of Moscow State University “The future of the planet and global environmental changes.” The expeditionary research was financially supported by the Ministry of Science and Higher Education of the Russian Federation (targeted funding for sea expeditions).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Belevich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belevich, T.A., Milyutina, I.A., Demidov, A.B. et al. Spring Picophytoplankton of the Kara Sea. Oceanology 62, 646–655 (2022). https://doi.org/10.1134/S0001437022050022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437022050022

Keywords:

Navigation