Log in

To the Question of Magmatism and Origin of the Afanasy Nikitin Rise Due to Discovery of Ancient Zircon by Three Billion Years Age

  • MARINE GEOLOGY
  • Published:
Oceanology Aims and scope

Abstract

A zircon with an age of ~2.9 Ga, much older than all existing dates, has been discovered for the first time in basalts of the Afanasy Nikitin Rise. Such an ancient age is typical of continental crust rocks of Western Hindustan or Antarctica. Analyses have revealed the geochemical similarity of magmas of the Conrad and Afanasy Nikitin rises and their difference from Crozet Rise magmas owing to their different formation conditions. Emplacement of the Conrad and Afanasy Nikitin rises occurred ~80–90 Ma ago under the influence of the same Conrad hotspot near the spreading Indian–Antarctic Ridge. This hotspot is a satellite of the giant Kerguelen Plume, active in the Eastern Indian Ocean from 130 Ma ago to the present. The plume formed the Ninetyeast Ridge in the ancient spreading center, and plume magmas leaked along the spreading zone up to the formation area of the Conrad and Afanasy Nikitin rises. During interaction of the Kerguelen Plume with the spreading zone and transform faults, nonspreading blocks of the ancient continental lithosphere of the Gondwana may have been preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. L. Bezrukov, L. K. Zatonskii, and I. V. Sergeev, “Afanasy Nikitin seamount in the Indian Ocean,” Dokl. Akad. Nauk SSSR 139 (1), 199–202 (1961).

    Google Scholar 

  2. B. V. Belyatsky and A. V. Andronnikov, “Age of the upper mantle of the Lake Beaver region (East Antarctica): Sm–Nd isotope systematics of mantle xenoliths,” Probl. Arkt. Antarkt. 78 (4), 146–169 (2009).

    Google Scholar 

  3. A. Yu. Borisova, V. V. Nikulin, B. V. Belyatsky, et al., “Late alkaline lavas of the Ob and Lena seamounts (Conrad Rise, Indian Ocean): geochemistry and characteristics of mantle sources,” Geochem. Int. 34, 503–517 (1996).

    Google Scholar 

  4. A. A. Bulychev, D. A. Gilod, and E. P. Dubinin, “Structure of the lithosphere of the northeastern part of the Indian Ocean according to results of two-dimensional structural-density modeling,” Geotectonics 50, 257–275 (2016).

    Google Scholar 

  5. V. E. Verzhbitskii and O. V. Levchenko, “Precise structure of the area of intraplate deformations in the Central basin of the Indian Ocean (the study results on three polygons),” Geotektonika, No. 6, 77–94 (2002).

    Google Scholar 

  6. Bottom Geology and Geophysics of the Eastern Part of the Indian Ocean, Ed. by P. L. Bezrukov and Yu. P. Neprochnov (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  7. E. P. Dubinin, A. L. Grokholsky, and A. I. Makushkina, “Physical modeling of the formation conditions of microcontinents and continental marginal plateaus,” Izv., Phys. Solid Earth 54, 66–78 (2018).

    Google Scholar 

  8. E. P. Dubinin, N. M. Sushchevskaya, and A. L. Grokhol’skiy, “The history of South Atlantics spreading ridges development and time–space position of Bouvet triple connection,” Russ. J. Earth Sci. 1, 423–443 (1999).

    Google Scholar 

  9. V. F. Kanaev, Bottom Relief of the Indian Ocean (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  10. G. L. Kashintsev, A. I. Al’mukhamedov, and V. V. Matveenkov, “Magmatic minerals of the Afanasy Nikitin Rise,” Izv. Ross. Akad. Nauk, Ser. Geol., No. 8, 41–52 (1992).

  11. L. I. Kogan, V. N. Moskalenko, and A. I. Pelipenko, “The structure and deformation of the Earth crust of the Afanasy Nikitin rise in the Indian Ocean (according to seismic data),” Geotektonika, No. 2, 54–65 (1996).

    Google Scholar 

  12. A. V. Kokhan, E. P. Dubinin, and N. M. Sushchevskaya, “Structure and evolution of eastern part of the Southwest Indian Ridge,” Geotectonics 4, 449–467 (2019).

    Google Scholar 

  13. O. V. Levchenko, “Geological history of the Afanasy Nikitin rise (Indian Ocean),” Byull. Mosk. O-va. Ispyt. Prir., Otd. Geol. 65 (5), 46–55 (1990).

    Google Scholar 

  14. O. V. Levchenko, Yu. G. Marinova, R. Werner, and M. V. Portnyagin, “Geological studies in the Eastern Indian Ocean: cruise SO258/1 of the R/V Sonne (Germany) with the participation of Russian researchers,” Oceanology (Engl. Transl.) 59, 276–278 (2019).

  15. G. L. Leitchenkov, E. P. Dubinin, A. L. Grokholsky, and G. D. Agranov, “Formation and evolution of microcontinents of the Kerguelen Plateau, Southern Indian Ocean,” Geotectonics 52, 499–515 (2018).

    Google Scholar 

  16. V. V. Matveenkov and Yu. V. Brusilovskii, “Tectonic evolution of the Afanasy Nikitin Rise,” Dokl. Ross. Akad. Nauk 317, 1183–1188 (1999).

    Google Scholar 

  17. I. M. Sborshchikov, G. L. Kashintsev, A. Ya. Gol’mshtok, et al., “Geological structure of the Afanasy Nikitin seamount in the zone of intraplate deformations of the Indian Ocean,” Okeanologiya (Moscow) 31, 846–852 (1991).

    Google Scholar 

  18. N. M. Sushchevskaya, G. V. Ovchinnikova, A. Yu. Borisova, et al., “Geochemical heterogeneity of the magmatism of the Afanasij Nikitin Rise, northeastern Indian Ocean,” Petrology 4, 119–136 (1996).

    Google Scholar 

  19. N. M. Sushchevskaya, E. V. Koptev-Dvornikov, A. A. Peive, et al., “Specific crystallization and geochemistry of tholeiitic magmas of the western end of the African-Antarctic Ridge (Spiess Ridge) in the area of the Bouvet triple junction,” Ross. Zh. Nauk Zemle 1 (3), 221–250 (1999).

    Google Scholar 

  20. N. M. Sushchevskaya, V. S. Kamenetsky, B. V. Belyatsky, and A. V. Artamonov, “Geochemical evolution of Indian Ocean basaltic magmatism,” Geochem. Int. 51, 599–622 (2013).

    Google Scholar 

  21. N. M. Sushchevskaya, N. A. Migdisova, A. V. Antonov, et al., “Geochemical features of the quaternary lamproitic lavas of Gaussberg Volcano, East Antarctica: Result of the impact of the Kerguelen plume,” Geochem. Int. 52, 1030–1048 (2014).

    Google Scholar 

  22. N. M. Sushchevskaya, O. V. Levchenko, E. P. Dubinin, and B. V. Belyatsky, “Ninetyeast ridge: magmatism and geodynamics,” Geochem. Int. 54, 237–256 (2016).

    Google Scholar 

  23. N. M. Sushchevskaya, B. V. Belyatsky, E. P. Dubinin, and O. V. Levchenko, “Evolution of the Kerguelen plume and its impact upon the continental and oceanic magmatism of East Antarctica,” Geochem. Int. 55, 775–791 (2017).

    Google Scholar 

  24. A. A. Shaikhullina, E. P. Dubinin, A. A. Bulychev, and D. A. Gilod, “Tectonics of the Crozet and Conrad uplifts according to geophysical data,” Geofizika, No. 2, 44–51 (2018).

    Google Scholar 

  25. A. A. Shaikhullina, E. P. Dubinin, A. A. Bulychev, and D. A. Gilod, “A comparative analysis of the structure of the tectonosphere of the Conrad and Afanasy Nikitin rises (Indian Ocean) using geophysical data,” Moscow Univ. Geol. Bull. 74, 316–320 (2019).

    Google Scholar 

  26. A. A. Shreider, Geomagnetic Studies of the Indian Ocean (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  27. T. Altenbernd, W. Jokat, and W. Geissler, “The bent prolongation of the 85° E Ridge south of 5° N—Fact or fiction?” Tectonophysics 785, 228457 (2020).

    Google Scholar 

  28. A. V. Andronikov and B. V. Beliatsky, “Implication of Sm-Nd isotopic systematics to the events recorded in the mantle-derived xenoliths from the Jetty Peninsula, East Antarctica,” Terra Antarct., No. 2, 103–110 (1995).

  29. P. Armienti and P. Longo, “Three-dimensional representation of geochemical data from a multidimensional compositional space,” Int. J. Geosci. 2, 231–239 (2011).

    Google Scholar 

  30. L. D. Ashwal, D. Demaiffe, and T. H. Torsvik, “Petrogenesis of Neoproterozoic granitoids and related rocks from the Seychelles: the case for an Andean-type arc origin,” J. Petrol. 43, 45–83 (2002).

    Google Scholar 

  31. L. D. Ashwal, M. Wiedenbeck, and T. H. Torsvik, “Archaean zircons in Miocene oceanic hotspot rocks establish ancient continental crust beneath Mauritius,” Nat. Commun. 8, 14086 (2017).

    Google Scholar 

  32. A. Bernard, M. Munshy, Y. Rotstein, and D. Sauter, “Refined spreading history at the Southwest Indian Ridge for the last 96 Ma, with the aid of satellite gravity data,” Geophys. J. Int. 162 (3), 765–778 (2005).

    Google Scholar 

  33. A. Yu. Borisova, B. V. Belyatsky, M. V. Portnyagin, and N. M. Sushchevskaya, “Petrogenesis of olivine–phyric basalts from the Aphanasey Nikitin Rise: evidence for contamination by cratonic lower continental crust,” J. Petrol. 42, 277–319 (2001).

    Google Scholar 

  34. T. Breton, F. Nauret, S. Pichat, et al., “Geochemical heterogeneities within the Crozet hotspot,” Earth Planet. Sci. Lett. 376, 126–136 (2013).

    Google Scholar 

  35. N. Chatterjee and K. Nicolaysen, “An intercontinental correlation of the mid-Neoproterozoic Eastern Indian tectonic zone: evidence from the gneissic clasts in Elan Bank conglomerate, Kerguelen Plateau,” Contrib. Miner. Petrol. 163, 789–806 (2012).

    Google Scholar 

  36. M. Coffin, M. S. Pringal, R. A. Dungan, et al., “Kerguelen hot spot magma output since 130 Ma,” J. Petrol. 43 (7), 1121–1139 (2002).

    Google Scholar 

  37. J. S. Collier, T. A. Minshull, J. O. S. Hammond, et al., “Factors influencing magmatism during continental breakup: new insights from a wide-angle seismic experiment across the conjugate Seychelles-Indian margins,” J. Geophys. Res.: Solid Earth 114, B03101 (2009). https://doi.org/10.1029/2008JB005898

    Article  Google Scholar 

  38. J. R. Curray and T. Munasinghe, “Origin of the Rajmahal Traps and the 85° E ridge: preliminary reconstructions of the trace of the Crozet hotspot,” Geology 19, 1237–1240 (1991).

    Google Scholar 

  39. P. Das, S. D. Iyer, V. N. Kodagali, and K. S. Krishna, “Distribution and origin of seamounts in the Central Indian Ocean basin,” Mar. Geodesy 28, 259–269 (2005).

    Google Scholar 

  40. D. Davies and T. J. G. Francis, “The crustal structure of the Seychelles Bank,” Deep-Sea Res. Oceanogr. Abstr. 11, 921–927 (1964).

    Google Scholar 

  41. M. A. Desa, M. V. Ramana, T. Ramprasad, et al., “Geophysical signatures over and around the northern segment of the 85° E ridge, Mahanadi offshore, Eastern Continental Margin of India: Tectonic implications,” J. Asian Earth Sci. 73, 460–472 (2013).

    Google Scholar 

  42. F. A. Frey, M. F. Coffin, and P. J. Wallace, “Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, southern Indian ocean,” Earth Planet. Sci. Lett. 176, 73–89 (2000).

    Google Scholar 

  43. F. A. Frey, M. Pringle, P. Meleney, et al., “Diverse mantle sources for Ninetyeast Ridge magmatism: geochemical constraints from basaltic glasses,” Earth Planet. Sci. Lett. 144, 163–183 (2011).

    Google Scholar 

  44. G. Gaina, R. D. Muller, B. Brown, and T. Ihihara, “Microcontinent formation around Australia,” Geol. Soc. Am. Spec. Pap. 372, 405–416 (2003).

    Google Scholar 

  45. A. D. Gibbons, J. M. Whittaker, and R. D. Müller, “The breakup of East Gondwana: Assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model,” J. Geophys. Res.: Solid Earth 118 (3), 808–822 (2013). https://doi.org/10.1002/jgrb.50079

    Article  Google Scholar 

  46. W. W. Hastie, M. K. Watkeys, and C. Aubourg, “Magma flow in dyke swarms of the Karoo LIP: implications for the mantle plume hypothesis,” Gondwana Res. 25, 736–755 (2014).

    Google Scholar 

  47. A. W. Hofmann, “Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements,” in Treatise on Geochemistry, Vol. 2: The Mantle and Core (Elsevier, Amsterdam, 2003), pp. 61–101.

  48. K. S. Krishna, “Structure and evolution of the Afanasy Nikitin seamount, buried hills and 85° E Ridge in the northeastern Indian Ocean,” Earth Planet. Sci. Lett. 209, 379–394 (2003).

    Google Scholar 

  49. K. S. Krishna, J. M. Bull, O. Ishizuka, et al., “Growth of the Afanasy Nikitin seamount and its relationship with the 85° E Ridge, northeastern Indian Ocean,” J. Earth Syst. Sci. 123 (1), 33–47 (2014).

    Google Scholar 

  50. A. S. Laughton, D. H. Matthews, and R. L. Fisher, “The structure of the Indian Ocean,” in The Sea, Ed. by A. Maxwell (Wiley, New York, 1971), Vol. 4, Part 2, pp. 543–586.

    Google Scholar 

  51. K. R. Ludwig, SQUID 1.00. User’s Manual (Berkeley Geochronology Center, Berkeley, 2001), Vol. 2.

    Google Scholar 

  52. K. R. Ludwig, User’s Manual for Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel (Berkeley Geochronology Center, Berkeley, 2012), Vol. 4.

    Google Scholar 

  53. J. J. Mahoney, J. H. Nathland, W. M. White, et al., “Isotopic and geochemical provinces of the Western Indian Ocean spreading centers,” J. Geophys. Res.: Solid Earth 94, 4033–4052 (1989).

    Google Scholar 

  54. J. J. Mahoney, W. M. White, B. G. J. Upton, et al., “Beyond EM-1: lavas from Afanasey Nikitin Rise and the Crozet Archipelago, Indian Ocean,” Geology 24, 615–618 (1996).

    Google Scholar 

  55. D. McKenzie and J. Sclater, “The evolution of the Indian Ocean since the Late Cretaceous,” J. R. Astron. Soc. 25, 437–528 (1971).

    Google Scholar 

  56. C. M. Meyzen, J. N. Ludden, E. Humler, et al., “New insights into the origin and distribution of the DUPAL isotopic anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge,” Geochem. Geophys. Geosyst. 6 (11), 1–34 (2005).

    Google Scholar 

  57. C. M. Meyzen, A. Marzoli, G. Bellieni, and G. Levresse, “Magmatic activity on a motionless plate: the case of East Island, Crozet Archipelago (Indian Ocean),” J. Petrol. 57 (7), 1409–1436 (2016).

    Google Scholar 

  58. E. V. Mikhalsky, F. Henjes-Kunst, B. V. Belyatsky, et al., “New Sm–Nd, Rb–Sr, U–Pb and Hf isotope systematics for the southern Prince Charles Mountains (East Antarctica) and its tectonic implications,” Precambrian Res. 182, 101–123 (2010).

    Google Scholar 

  59. A. Montanini and R. Tribuzio, “Evolution of recycled crust within the mantle: constraints from the garnet pyroxenites of the External Ligurian ophiolites (northern Apennines, Italy),” Geology 43 (10), 911–914 (2015).

    Google Scholar 

  60. R. D. Muller, J.-Y. Royer, and L. A. Lawver, “Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks,” Geology 21, 275–278 (1993).

    Google Scholar 

  61. M. Nemcok and S. Rybar, “Rift–drift transition in a magma-rich system: the Gop Rift–Laxmi Basin case study, West India,” Geol. Soc. Lond. Spec. Publ. 445, 95–117 (2016). https://doi.org/10.1144/SP445.5

    Article  Google Scholar 

  62. H. K. H. Olierook, F. Jourdan, R. E. Merle, et al., “Bunbury basalt: Gondwana breakup products or earliest vestiges of the Kerguelen mantle plume?” Earth Planet. Sci. Lett. 440, 20–32 (2016).

    Google Scholar 

  63. P. Patriat and J. Segoufin, “Reconstruction of Central Indian Ocean,” Tectonophysis 155, 211–234 (1988).

    Google Scholar 

  64. M. Ramana, V. Subrahmanyam, A. Chaubey, et al., “Structure and origin of the 85° E ridge,” J. Geophys. Res.: Solid Earth 102, 17995–18012 (1997).

    Google Scholar 

  65. N. V. Rodionov, B. V. Belyatsky, A. V. Antonov, et al., “Comparative in-situ U–Th–Pb geochronology and trace element composition of baddeleyite and low-U zircon from carbonatites of the Palaeozoic Kovdor alkaline–ultramafic complex, Kola Peninsula, Russia,” Gondwana Res. 21 (4), 728–744 (2012).

    Google Scholar 

  66. D. S. Scheirer, D. W. Forsyth, J. A. Conder, et al., “Anomalous seafloor spreading of the Southeast Indian Ridge near the Amsterdam–St. Paul Plateau,” J. Geophys. Res.: Solid Earth 10, 8243–8262 (2000).

    Google Scholar 

  67. J. S. Stacey and J. D. Kramers, “Approximation of terrestrial Pb isotope evolution by a two-stage model,” Earth Planet. Sci. Lett. 26, 207–221 (1975).

    Google Scholar 

  68. M. Storey, A. D. Saunders, J. Tarney, and I. L. Gibson, “Contamination of Indian Ocean asthenosphere by the Kerguelen-Heard mantle plume,” Nature 338, 574–576 (1989).

    Google Scholar 

  69. N. M. Sushchevskaya, B. V. Belyatsky, and A. V. Laiba, “Origin, distribution and evolution of plume magmatism in East Antarctica,” in Updates in Volcanology: A Comprehensive Approach to Volcanological Problems, Ed. by F. Stoppa (InTechOpen, London, 2011), pp. 3–29.

  70. T. H. Torsvik, H. E. F. Amundsen, E. H. Hartz, et al., “A Precambrian microcontinent in the Indian Ocean,” Nat. Geosci. 16, 223–227 (2013). https://doi.org/10.1038/NGEO1736

    Article  Google Scholar 

  71. T. H. Torsvik, et al., “Continental crust beneath southeast Iceland,” Proc. Natl. Acad. Sci. U.S.A. 112, E1818–E1827 (2015).

    Google Scholar 

  72. R. Werner, H.-J. Wagner, and F. Hauff, RV SONNE Fahrtbericht/Cruise Report SO258/1: INGON: The Indian–Antarctic Break-up Engima, Fremantle (Australia)–Colombo (Sri Lanka) 07.06.–09.07.2017 (Kiel, 2017). https://oceanrep.geomar.de/39238/.

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 19-05-00680) and partly within a state task (topic nos. 0137-2019-0012 (N.M. Sushchevskaya) and 0128-2021-0005 (O.V. Levchenko).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Sushchevskaya, O. V. Levchenko or B. V. Belyatsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sushchevskaya, N.M., Levchenko, O.V. & Belyatsky, B.V. To the Question of Magmatism and Origin of the Afanasy Nikitin Rise Due to Discovery of Ancient Zircon by Three Billion Years Age. Oceanology 62, 114–126 (2022). https://doi.org/10.1134/S0001437022010143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437022010143

Keywords:

Navigation