Log in

Fast Algorithms for Solving the Inverse Scattering Problem for the Zakharov–Shabat System of Equations and Their Applications

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The problem of numerical solution of a nonlinear Schrödinger equation is considered from the point of view of applications to the compensation of signal distortions in a fiber optic communication line. The problem of constructing fast algorithms for the direct and inverse scattering problems for the Zakharov–Shabat system of equations is studied. An overview of the main methods used currently is given. The time complexity of the algorithms is described together with their applicability to realistic signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform. Part I: Mathematical tools,” IEEE Trans. Inform. Theory 60 (7), 4312–4328 (2014).

    Article  MathSciNet  Google Scholar 

  2. M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform. Part II: Numerical Methods,” IEEE Trans. Inform. Theory 60 (7), 4329–4345 (2014).

    Article  MathSciNet  Google Scholar 

  3. M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform. Part III: Spectrum Modulation,” IEEE Trans. Inform. Theory 60 (7), 4346–4369 (2014).

    Article  MathSciNet  Google Scholar 

  4. J. Ginibre and G. Velo, “On a class of nonlinear Schrödinger equations,” J. Funct. Anal. 32, 1–32 (1979).

    Article  Google Scholar 

  5. W. A. Strauss, “Mathematical aspects of classical nonlinear field equations,” in Nonlinear Problems in Theoretical Physics, Lect. Notes in Phys. (Springer, Berlin, 1979), Vol. 98, pp. 123–149.

    Chapter  Google Scholar 

  6. M. Tsutsumi, “Sobolev spaces and repeadly decreased solutions of some nonlinear dispersive wave equations,” J. Differential Equations 42 (2), 260–281 (1981).

    Article  MathSciNet  Google Scholar 

  7. L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer, Berlin, 1987).

    Book  Google Scholar 

  8. T. Cormen, Ch. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms (Oldenbourg Verlag, München, 2010).

    MATH  Google Scholar 

  9. D. Rafique, “Fiber nonlinearity compensation: commercial applications and complexity analysis,” J. Lightwave Technology 34 (2), 544–553 (2016).

    Article  Google Scholar 

  10. G. L. Lamb (Jr.), Elements of Soliton Theory (John Wiley & Sons, New York-Chichester-Brisbane- Toronto, 1980).

    Google Scholar 

  11. V. E. Zakharov and A. B. Shabat, Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves (INF, Novosibirsk, 1971) [in Russian].

    Google Scholar 

  12. V. A. Marchenko, “Recovery of the potential energy from the phases of scattered waves,” Dokl. Akad. Nauk SSSR 104 (5), 695–698 (1955).

    MathSciNet  Google Scholar 

  13. I. M. Gel’fand and B. M. Levitan, “On the determination of a differential equation from its spectral function,” Izv. Akad. Nauk SSSR Ser. Mat. 15 (4), 309–360 (1951).

    MathSciNet  MATH  Google Scholar 

  14. S. K. Turitsyn, J. E. Prilepsky, S. T. Le, S. Wahls, L. L. Frumin, M. Kamalian, and S. A. Derevyanko, “Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives,” Optica, No. 4, 307–322 (2017).

    Article  Google Scholar 

  15. V. Vaibhav, “Fast inverse nonlinear Fourier transformation using exponential one-step methods: Darboux transformation,” Phys. Rev. E 96 (6), 063302-1–063302-35 (2017).

    Article  MathSciNet  Google Scholar 

  16. W. K. McClary, “Fast seismic inversion,” Geophysics 48 (10), 1371–1372 (1983).

    Article  Google Scholar 

  17. V. Vaibhav, “Nonlinear Fourier transform of time-limited and one-sided signals,” J. Phys. A 51 (42), Art no. 425201 (2018).

    Article  MathSciNet  Google Scholar 

  18. S. Wahls and H. V. Poor, “Fast numerical nonlinear Fourier transforms,” IEEE Trans. Inform. Theory 61 (12), 6957–6974 (2015).

    Article  MathSciNet  Google Scholar 

  19. S. Chimmalgi, P. J. Prins, and S. Wahls, “Fast nonlinear Fourier transform algorithms using higher order exponential integrators,” IEEE Access 7 (1), 145161–145176 (2019).

    Article  Google Scholar 

  20. M. G. Krein, “On determining the potential of a particle from its \(S\)-function,” Dokl. Akad. Nauk SSSR 105 (4), 433–436 (1955).

    MathSciNet  Google Scholar 

  21. O. V. Belai, L. L. Frumin, E. V. Podivilov, and D. A. Shapiro, “Efficient numerical method of the fiber Bragg grating synthesis,” J. Opt. Soc. Amer. B Opt. Phys. 24 (7), 1451–1457 (2007).

    Article  MathSciNet  Google Scholar 

  22. V. V. Voevodin and E. E. Tyrtyshnikov, Numerical Processes with Toeplitz Matrices (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  23. F. de Hoog, “A New Algorithm for Solving Toeplitz Systems of Equations,” Linear Algebra Appl. 88/89, 123–138 (1987).

    Article  MathSciNet  Google Scholar 

  24. G. H. Golub and Ch. F. Van-Loan, Matrix Computations (Johns Hopkins University Press, Baltimore, MD, 2013).

    MATH  Google Scholar 

  25. D. A. Bini, L. Gemignani, and V. Y. Pan, “Fast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations,” Numer. Math. 100 (3), 373–408 (2005).

    Article  MathSciNet  Google Scholar 

  26. V. Y. Pan, “Solving a polynomial equation: some history and recent progress,” SIAM Rev. 39 (2), 187–220 (1997).

    Article  MathSciNet  Google Scholar 

  27. L. M. Delves and J. N. Lyness, “A Numerical Method for Locating the Zeros of an Analytic Function,” Math. Comp. 21 (100), 543–560 (1967).

    Article  MathSciNet  Google Scholar 

  28. A. M. Bruckstein, B. C. Levy, and T. Kailath, “Differential methods in inverse scattering,” SIAM J. Appl. Math. 45 (2), 312–335 (1985).

    Article  MathSciNet  Google Scholar 

  29. A. M. Bruckstein, I. Koltracht, and T. Kailath, “Inverse scattering with noisy data,” SIAM J. Sci. Statist. Comput. 7 (4), 1331–1349 (1986).

    Article  MathSciNet  Google Scholar 

  30. A. M. Bruckstein and T. Kailath, “Inverse scattering for discrete transmission-line models,” SIAM Rev. 29 (3), 359–389 (1987).

    Article  MathSciNet  Google Scholar 

  31. J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quant. Electron. 37 (2), 165–173 (2001).

    Article  Google Scholar 

  32. L. Poladian, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quant. Electron. 37 (2), 165–173 (2001).

    Article  Google Scholar 

  33. L. Poladian, “Simple grating synthesis algorithm,” Optics Lett. 25 (11), 787–789 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Delitsyn.

Additional information

Translated from Matematicheskie Zametki, 2022, Vol. 112, pp. 198–217 https://doi.org/10.4213/mzm13561.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delitsyn, A.L. Fast Algorithms for Solving the Inverse Scattering Problem for the Zakharov–Shabat System of Equations and Their Applications. Math Notes 112, 199–214 (2022). https://doi.org/10.1134/S0001434622070240

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622070240

Keywords

Navigation