Log in

Russian Middle Atmosphere Research 2019–2022

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A review of the results of Russian studies of the middle atmosphere in 2019–2022, prepared by the Commission on the Middle Atmosphere of the Meteorology and Atmospheric Sciences Section (MASS) of the Russian National Geophysical Committee for the National Report on Meteorology and Atmospheric Sciences to the 28th General Assembly of the International Union of Geodesy and Geophysics (Germany, 2023), is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

REFERENCES

  1. Bakhmetieva, N.V. and Grigoriev, G.I., Study of the mesosphere and lower thermosphere by the method of creating artificial periodic irregularities of the ionospheric plasma, Atmosphere, 2022a, vol. 13, no. 9, p. 1346. https://doi.org/10.3390/atmos13091346

    Article  ADS  Google Scholar 

  2. Bakhmetieva, N.V., Kulikov, Y.Y., and Zhemyakov, I.N., Mesosphere ozone and the lower ionosphere under plasma disturbance by powerful high-frequency radio emission, Atmosphere, 2020b, vol. 11, no. 11, p. 1154. https://doi.org/10.3390/atmos11111154

    Article  ADS  CAS  Google Scholar 

  3. Bazhenov, O.E., Ozone anomaly during winter–spring 2019–2020 in the Arctic and over the north of Eurasia using satellite (Aura MLS/OMI) observations, Atmos. Oceanic Opt., 2021, vol. 34, no. 7, pp. 643–648. https://doi.org/10.1134/S102485602106004X

    Article  ADS  CAS  Google Scholar 

  4. Bazhenov, O.E., Ozone anomalies in the stratosphere of the Arctic and North Eurasia: Comparison of the 2011 and 2020 events using TEMIS and Aura MLS data, Atmos. Oceanic Opt., 2022, vol. 35, no. 5, pp. 517–523. https://doi.org/10.1134/S1024856022050086

    Article  ADS  CAS  Google Scholar 

  5. Bazhenov, O.E., Nevzorov, A.A., Nevzorov, A.V., Dolgii, S.I., and Makeev, A.P., Disturbance of the stratosphere over Tomsk during winter 2017/2018 using lidar and Aura MLS/OMI observations, Atmos. Oceanic Opt., 2020, vol. 33, no. 7, pp. 622–628. https://doi.org/10.1134/S1024856020060068

    Article  ADS  CAS  Google Scholar 

  6. Belyaev, A.N., Local temperature changes in the mesosphere due to a “horizontally propagating” turbulent patch, J. Atmos. Sol.-Terr. Phys., 2019, vol. 190, pp. 62–73. https://doi.org/10.1016/j.jastp.2019.05.006

    Article  ADS  Google Scholar 

  7. Cheremisin, A.A., Marichev, V.N., Novikov, P.V., Pavlov, A.N., Shmirko, K.A., and Bochkovskii, D.A., Assessing the transport of volcanic aerosol in the stratosphere over Tomsk and Vladivostok from lidar data, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 5, pp. 345–354. https://doi.org/10.3103/S1068373919050066

    Article  Google Scholar 

  8. Cheremisin, A.A., Marichev, V.N., Bochkovskii, D.A., Novikov, P.V., and Romanchenko, I.I., Stratospheric aerosol of Siberian forest fires according to lidar observations in Tomsk in August 2019, Atmos. Oceanic Opt., 2021, vol. 35, no. 1, pp. 57–64. https://doi.org/10.1134/S1024856022010043

    Article  ADS  Google Scholar 

  9. Danilov, A.D. and Berbeneva, N.A., Some applied aspects of the study of trends in the upper and middle atmosphere, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 4, pp. 578–588.

  10. Danilov, A.D. and Konstantinova, A.V., Long-term variations in the parameters of the middle and upper atmosphere and ionosphere (review), Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 4, pp. 397–420.

  11. Ermakova, T.S., Koval, A.V., Smyshlyaev, S.P., Didenko, K.A., Aniskina, O.G., Savenkova, E.N., and Vinokurova, E.V., Manifestations of different El Niño types in the dynamics of the extratropical stratosphere, Atmosphere, 2022, vol. 13, no. 12, p. 2111. https://doi.org/10.3390/atmos13122111

    Article  ADS  Google Scholar 

  12. Gabis, I.P., Quasi-biennial oscillation of the equatorial total ozone: A seasonal dependence and forecast for 2019–2021, J. Atmos. Sol.-Terr. Phys., 2020, vol. 207, p. 105353. https://doi.org/10.1016/j.jastp.2020.105353

    Article  CAS  Google Scholar 

  13. Gabis, I.P., Quasi-biennial oscillation of zonal wind in the equatorial stratosphere and its influence on interannual fluctuations in the depth of the Antarctic ozone hole, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 5, pp. 287–294.

    Article  ADS  Google Scholar 

  14. Gavrilov, N.M., Kshevetskii, S.P., and Koval, A.V., Thermal effects of nonlinear acoustic-gravity waves propagating at thermospheric temperatures matching high and low solar activity, J. Atmos. Sol.-Terr. Phys., 2020, vol. 208, p. 105381. https://doi.org/10.1016/j.jastp.2020.105381

    Article  Google Scholar 

  15. Gavrilov, N.M., Kshevetskii, S.P., and Koval, A.V., Decay time of atmospheric acoustic-gravity waves after deactivation of wave forcing, Atmos. Chem. Phys., 2022, vol. 22, no. 20, pp. 13713–13724. https://doi.org/10.5194/acp-22-13713-2022

    Article  ADS  CAS  Google Scholar 

  16. Gerasimov, V.V., Zuev, V.V., Savel’eva, E.S., Traces of Canadian pyrocumulonimbus clouds in the stratosphere over Tomsk in June–July, 1991, Atmos. Oceanic Opt., 2019, vol. 32, no. 3, pp. 316–323. https://doi.org/10.15372/AOO20190106

    Article  CAS  Google Scholar 

  17. Ginzburg, E.A., Krivolutsky, A.A., Kukoleva, A.A., Myagkova, I.N., Calculation of the Ionization rate in the atmosphere in the polar region during solar proton events, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 5, pp. 570–576.

  18. Gochakov, A.V., Antokhina, O.Yu., Krupchatnikov, V.N., and Martynova, Yu.V., Method for identifying and clustering Rossby wave breaking events in the Northern Hemisphere, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 1, pp. 10–18.

    Article  Google Scholar 

  19. Grankin, D., Mironova, I., Bazilevskaya, G., Rozanov, E., and Egorova, T., Atmospheric response to EEP during geomagnetic disturbances, Atmosphere, 2023, vol. 14, no. 2, p. 273. https://doi.org/10.3390/atmos14020273

    Article  ADS  CAS  Google Scholar 

  20. Grigoriev, G.I., Lapin, V.G., and Kalinina, E.E., Generation of internal gravity waves in the thermosphere during operation of the SURA facility under parametric resonance conditions, Atmosphere, 2020, vol. 11, no. 11, p. 1169. https://doi.org/10.3390/atmos11111169

    Article  ADS  Google Scholar 

  21. Jakovlev, A.R. and Smyshlyaev, S.P., Numerical simulation of World Ocean effects on temperature and ozone in the lower and middle atmosphere, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 9, pp. 594–602.

    Article  Google Scholar 

  22. Jakovlev, A.R., Smyshlyaev, S.P., and Galin, V.Y., Interannual variability and trends in sea surface temperature, lower and middle atmosphere temperature at different latitudes for 1980–2019, Atmosphere, 2021, vol. 12, no. 4, p. 454. https://doi.org/10.3390/atmos12040454

    Article  ADS  CAS  Google Scholar 

  23. Kandieva, K.K., Aniskina, O.G., Pogorel’tsev, A.I., Zorkal’tseva, O.S., and Mordvinov, V.I., Effect of the Madden–Julian Oscillation and Quasi-Biennial Oscillation on the dynamics of extratropical stratosphere, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 1, pp. 105–114. https://doi.org/10.1134/S0016793218060063

  24. Karagodin, A., Rozanov, E., Mareev, E., Mironova, I., Volodin, E., and Golubenko, K., The representation of ionospheric potential in the global chemistry-climate model SOCOL, Sci. Total Environ., 2019, vol. 697, p. 134172.

    Article  ADS  PubMed  CAS  Google Scholar 

  25. Karagodin, A., Rozanov, E., and Mironova, I., On the possibility of modeling the IMF B y–weather coupling through GEC-related effects on cloud droplet coalescence rate, Atmosphere, 2022, vol. 13, no. 6, p. 881. https://doi.org/10.3390/atmos13060881

    Article  ADS  Google Scholar 

  26. Kashkin, V.B., Odintsov, R.V., and Rubleva, T.V., On the effects of a nuclear explosion on stratospheric ozone, Atmos. Oceanic Opt., 2022, vol. 35, no. 3, pp. 402–406. https://doi.org/10.1134/S1024856022040066

    Article  ADS  CAS  Google Scholar 

  27. Kirillov, A.S., Belakhovskii, V.B., Maurchev, E.A., Balabin, Yu.V., Germanenko, A.V., and Gvozdevskii, B.B., Luminescence of molecular nitrogen and molecular oxygen in the Earth’s middle atmosphere during the precipitation of high-energy protons, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 60, no. 6, pp. 864–870.

  28. Kolennikova, M. and Gushchina, D., Revisiting the contrasting response of polar stratosphere to the Eastern and Central Pacific El Niños, Atmosphere, 2022, vol. 13, no. 5, p. 682. https://doi.org/10.3390/atmos13050682

    Article  ADS  Google Scholar 

  29. Kolennikova, M.A., Vargin, P.N., and Gushchina, D.Yu., Interrelations between El Niño indices and major characteristics of polar stratosphere according to CMIP5 models and reanalysis, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 6, pp. 351–364. https://doi.org/10.3103/S1068373921060017

    Article  Google Scholar 

  30. Korotyshkin, D., Merzlyakov, E., Jacobi, C., Lilienthal, F., and Wu, Q., Longitudinal MLT wind structure at higher mid-latitudes as seen by meteor radars at Central and Eastern Europe (13° E/49° E), Adv. Space Res., 2019a, vol. 63, no. 10, pp. 3154–3166. https://doi.org/10.1016/j.asr.2019.01.036

    Article  ADS  Google Scholar 

  31. Korotyshkin, D., Merzlyakov, E., Sherstyukov, O., and Valiullin, F., Mesosphere/lower thermosphere wind regime parameters using a newly installed SKiYMET meteor radar at Kazan (56° N, 49° E), Adv. Space Res., 2019b, vol. 64, no. 7, pp. 2132–2143. https://doi.org/10.1016/j.asr.2018.12.032

    Article  ADS  Google Scholar 

  32. Korshunov, V.A. and Zubachev, D.S., Increase in the aerosol backscattering ratio in the lower mesosphere in 2019–2021 and its effect on temperature measurements with the Rayleigh method, Atmos. Oceanic Opt., 2022a, vol. 35, no. 1, pp. 366–370. https://doi.org/10.1134/S102485602204008X

    Article  ADS  Google Scholar 

  33. Korshunov, V.A. and Zubachev, D.S., Manifestation of solar activity effects in lidar observations of stratospheric aerosol, Geomagn. Aeron. (Engl. Transl.), 2022b, vol. 62, no. 1, pp. S67–S74.

  34. Korshunov, V.A., Merzlyakov, E.G., Yudakov, A.A., Observations of meteoric aerosol in the upper stratosphere–lower mesosphere by the method of two-wavelength lidar sensing, Atmos. Oceanic Opt., 2019, vol. 32, no. 1, pp. 45–54. https://doi.org/10.1134/S1024856019010081

    Article  CAS  Google Scholar 

  35. Koval, A.V., Statistically significant estimates of influence of solar activity on planetary waves in the middle atmosphere of the Northern Hemisphere as derived from MUAM model data, J. Sol.-Terr. Phys., 2019a, vol. 5, no. 4, pp. 53–59.

    Google Scholar 

  36. Koval, A.V., Gavrilov, N.M., Pogoreltsev, A.I., and Drobashevskaya, E.A., Numerical simulation of the mean meridional circulation in the middle atmosphere at different phases of stratospheric warmings and mountain wave scenarios, J. Atmos. Sol.-Terr. Phys., 2019b, vol. 183, pp. 11–18. https://doi.org/10.1016/j.jastp.2018.12.012

    Article  ADS  Google Scholar 

  37. Koval, A.V., Gavrilov, N.M., Didenko, K.A., Ermakova, T.S., and Savenkova, E.N., Sensitivity of the 4–10-day planetary wave structures in the middle atmosphere to the solar activity effects in the thermosphere, Atmosphere, 2022, vol. 13, no. 8, p. 1325. https://doi.org/10.3390/atmos13081325

    Article  ADS  Google Scholar 

  38. Krivolutsky, A.A., V’yushkova, T.Yu., Cherepanova, L.A., Banin, M.V., Repnev, A.I., and Kukoleva, A.A., Numerical global models of the ionosphere, ozonosphere, temperature regime, and circulation for altitudes of 0–130 km: Results and prospects, Russ. Meteorol. Hydrol., 2021a, vol. 46, no. 9, pp. 595–605.

    Google Scholar 

  39. Krivolutsky, A.A., V’yushkova, T.Yu., and Banin, M.V., Global’naya trekhmernaya chislennaya fotokhimicheskaya model' CHARM (The CHARM Global Three-Dimensional Numerical Photochemical Model), Moscow: GEOS, 2021b.

  40. Kropotkina, E.P., Rozanov, S.B., Lukin, A.N., Ignat’ev, A.N., and Solomonov, S.V., Characteristics of changes in the ozone content in the upper stratosphere over Moscow during the cold half-years of 2014–2015 and 2015–2016, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 2, pp. 212–220. https://doi.org/10.1134/S0016793219010092

  41. Kulikov, Yu.Yu., Poberovskii, A.V., Ryskin, V.G., and Y-ushkov, V.A., Detection of large fluctuations in ozone content in the middle atmosphere during sudden stratospheric warmings and subpolar latitudes of the Arctic, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 2, pp. 254–262. https://doi.org/10.1134/S0016793220020097

  42. Kulikov, Yu.Yu., Kirillov, A.S., Poberovskii, A.V., and Imkhasin, Kh.Kh., Microwave monitoring of middle atmosphere ozone in Apatity and Peterhof in the winter of 2021/2022, Russ. Meteorol. Hydrol., 2022a, vol. 47, no. 12, pp. 969–975.

    Article  Google Scholar 

  43. Kulikov, M.Yu., Belikovich, M.V., Grygalashvyly, M., Sonnemann, G.R., and Feigin, A.M., Retrieving daytime distributions of O, H, OH, HO2, and chemical heating rate in the mesopause region from satellite observations of ozone and OH volume emission: The evaluation of the importance of the reaction H + O3 → O2 + OH in the ozone balance, Adv. Space Res., 2022b, vol. 69, no. 9, pp. 3362–3373.

    Article  ADS  CAS  Google Scholar 

  44. Kuminov, A.A., Yushkov, V.A., Gvozdev, Yu.N., Shtyrkov, O.V., Lykov, A.D., and Balugin, N.V., Meteorological rocket sounding for atmospheric research and geophysical monitoring, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 9, pp. 571–578.

    Article  Google Scholar 

  45. Kurdyaeva, Yu.A., Kshevetskii, S.P., Borchevkina, O.P., and Karpov, M.I., Wind effects in the thermosphere during the propagation of atmospheric waves generated by a tropospheric heat source, Geomagn. Aeron. (Engl. Transl.), 2022, vol. 62, no. 4, pp. 453–459. https://doi.org/10.1134/S0016793222040119.

  46. Lukyanov, A.N., Gan’shin, A.V., Yushkov, V.A., and Vyazankin, A.S., Trajectory modeling of the middle atmosphere, Russ. Meteorol. Hydrol., 2021b, vol. 46, no. 9, pp. 624–630. https://doi.org/10.3103/S1068373921090089

    Article  Google Scholar 

  47. Makhmutov, V.S., Bazilevskaya, G.A., Mironova, I.A., Sinnhuber, M., Rozanov, E., Sukhodolov, T., Gvozdevskii, B.B., and Svirzhevsky, N.S., Atmospheric effects during the precipitation of energetic electrons, Bull. Russ. Acad. Sci.: Phys., 2021, vol. 85, no. 11, pp. 1310–1313.

    Article  CAS  Google Scholar 

  48. Marichev, V.N. and Bochkovskii, D.A., Monitoring the variability of the stratospheric aerosol layer over Tomsk in 2016–2018 based on lidar data, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 1, pp. 43–51.

    Article  Google Scholar 

  49. Medvedev, A.V., Ratovsky, K.G., Tolstikov, M.V., Vasilyev, R.V., and Artamonov, M.F., Method for determining neutral wind velocity vectors using measurements of internal gravity wave group and phase velocities, Atmosphere, 2019, vol. 10, no. 9, p. 546. https://doi.org/10.3390/atmos10090546

    Article  ADS  CAS  Google Scholar 

  50. Medvedeva, I.V., Semenov, A.I., Pogoreltsev, A.I., and Tatarnikov, A.V., Influence of sudden stratospheric warming on the mesosphere/lower thermosphere from the hydroxyl emission observations and numerical simulations, J. Atmos. Sol.-Terr. Phys., 2019, vol. 187, pp. 22–32.

    Article  ADS  CAS  Google Scholar 

  51. Merzlyakov, E., Solovyova, T., Yudakov, A., Korotyshkin, D., Jacobi, Ch., and Lilienthal, F., Some features of the day-to-day MLT wind variability in winter 2017–2018 as seen with a European/Siberian meteor radar network, Adv. Space Res., 2020a, vol. 65, no. 6, pp. 1529–1543. https://doi.org/10.1016/j.asr.2019.12.018

    Article  ADS  Google Scholar 

  52. Merzlyakov, E., Solovyova, T., Yudakov, A., Korotyshkin, D., Jacobi, Ch., and Lilienthal, F., Amplitude modulation of the semidiurnal tide based on MLT wind measurements with a European/Siberian meteor radar network in October–December 2017, Adv. Space Res., 2020b, vol. 66, no. 3, pp. 631–645. https://doi.org/10.1016/j.asr.2020.04.036

    Article  ADS  Google Scholar 

  53. Merzlyakov, E., Korotyshkin, D., Jacobi, Ch., and Lilienthal, F., Long-period meteor radar temperature variations over Collm (51° N, 13° E) and Kazan (56° N, 49° E), Adv. Space Res., 2021, vol. 67, no. 10, pp. 3250–3259.

    Article  ADS  Google Scholar 

  54. Mironova, I.A., Artamonov, A.A., Bazilevskaya, G.A., Rozanov, E.V., Kovaltsov, G.A., Makhmutov, V.S., Mishev, A., and Karagodin, A.V., Ionization of the polar atmosphere by energetic electron precipitation retrieved from balloon measurements, Geophys. Res. Lett., 2019a, vol. 46, pp. 990–996. https://doi.org/10.1029/2018GL079421

    Article  ADS  Google Scholar 

  55. Mironova, I.A., Bazilevskaya, G.A., Kovaltsov, G.A., Artam-onov, A.A., Rozanov, E.V., Mishev, A., Makhmutov, V.S., Karagodin, A.V., and Golubenko, K.S., Spectra of high energy electron precipitation and atmospheric ionization rates retrieval from balloon measurements, Sci. Total Environ., 2019b, vol.693, pp. 133–242.

    Article  Google Scholar 

  56. Mironova, I., Kovaltsov, G., Mishev, A., and Artamonov, A., Ionization in the Earth’s atmosphere due to isotropic energetic electron precipitation: Ion production and primary electron spectra, Remote Sens., 2021a, vol. 13, p. 4161. https://doi.org/10.3390/rs13204161

    Article  ADS  Google Scholar 

  57. Mironova, I., Karagodin-Doyennel, A., and Rozanov, E., The effect of Forbush decreases on the polar-night HOx concentration affecting stratospheric ozone, Front. Earth Sci., 2021b, vol. 8, p. 618583. https://doi.org/10.3389/feart.2020.618583

    Article  Google Scholar 

  58. Mironova, I., Sinnhuber, M., Bazilevskaya, G., Clilverd, M., Funke, B., Makhmutov, V., Rozanov, E., Santee, M.L., Sukhodolov, T., and Ulich, T., Exceptional middle latitude electron precipitation detected by balloon observations: Implications for atmospheric composition, Atmos. Chem. Phys., 2022, vol. 22, pp. 6703–6716. https://doi.org/10.5194/acp-22-6703-2022

    Article  ADS  CAS  Google Scholar 

  59. Nevzorov, A.V., Bazhenov, O.E., El’nikov, A.V., and Loginov, V.A., Comparison of time series of integrated aerosol content in the stratosphere and total ozone content, Atmos. Oceanic Opt., 2021b, vol. 34, no. 5, pp. 411–416. https://doi.org/10.1134/S102485602105016X

    Article  ADS  CAS  Google Scholar 

  60. Nikiforova, M.P., Vargin, P.N., and Zvyagintsev, A.M., Ozone anomalies over Russia in the winter-spring of 2015/2016, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 1, pp. 23–32.

    Article  Google Scholar 

  61. Nikitenko, A.A., Timofeev, Yu.M., Virolainen, Ya.A., Nerobelov, G.M., and Poberovskii, A.V., Comparison of stratospheric CO2 measurements by ground- and satellite-based methods, Atmos. Oceanic Opt., 2022, vol.35, no. 4, pp. 341–344. https://doi.org/10.1134/S1024856022040145

    Article  ADS  CAS  Google Scholar 

  62. Perevedentsev, Yu.P., Shantalinskii, K.M., Vasil’ev, A.A., and Gur’yanov, V.V., Thermal regime of the troposphere, stratosphere, and lower mesosphere in the Northern Hemisphere in 1979–2016, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 8, pp. 501–512.

    Article  Google Scholar 

  63. Pertsev, N.N., Dalin, P.A., and Perminov, V.I., Lunar tides in the mesopause region obtained from summer temperature of the hydroxyl emission layer, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 2, pp. 259–265.

  64. Pikulina, P., Mironova, I., Rozanov, E., and Karagodin, A., September 2017 solar flares effect on the middle atmosphere, Remote Sens, 2022, vol. 14, p. 2560.

    Article  ADS  Google Scholar 

  65. Popov, A.A., Gavrilov, N.M., Perminov, V.I., Pertsev, N.N., and Medvedeva, I.V., Multi-year observations of mesoscale variances of hydroxyl nightglow near the mesopause at Tory and Zvenigorod, J. Atmos. Sol.-Terr. Phys., 2020, vol. 205, p. 105311. https://doi.org/10.1016/j.jastp.2020.105311

    Article  CAS  Google Scholar 

  66. Popov, A.A., Gavrilov, N.M., Perminov, V.I., and Pertsev, N.N., Statistical correction of mesoscale variances of the upper atmospheric temperature based on observations of the night hydroxyl emission in Zvenigorod, Geomagn. Aeron. (Engl. Transl.), 2022, vol. 62, no. 1, pp. S127–S133.

  67. Shashkin, V.V., Tolstykh, M.A., and Volodin, E.M., Stratospheric circulation modeling with the SL-AV semi-Lagrangian atmospheric model, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 1, pp. 1–12.

    Article  Google Scholar 

  68. Shevchuk, N., Pertsev, N., Dalin, P., and Perminov, V., Wave-induced variations in noctilucent cloud brightness: Model and experimental studies, J. Atmos. Sol.-Terr. Phys., 2020, vol. 203, p. 105257. https://doi.org/10.1016/j.jastp.2020.105257

    Article  Google Scholar 

  69. Shpynev, B.G., Khabituev, D.S., Chernigovskaya, M.A., and Zorkal’tseva, O.S., Role of winter jet stream in the middle atmosphere energy balance, J. Atmos. Sol.-Terr. Phys., 2019, vol. 188, pp. 1–10. https://doi.org/10.1016/j.jastp.2019.03.008

    Article  ADS  CAS  Google Scholar 

  70. Smyshlyaev, S.P., Blakitnaya, P.A., Motsakov, M.A., Numerical modeling of the influence of physical and chemical factors on the interannual variability of Antarctic ozone, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 3, pp. 153–160.

    Article  Google Scholar 

  71. Smyshlyaev, S.P., Vargin, P.N., and Motsakov, M.A., Numerical modeling of ozone loss in the exceptional arctic stratosphere winter-spring of 2020, Atmosphere, 2021, vol. 12, no. 11, p. 1470. https://doi.org/10.3390/atmos12111470

    Article  ADS  CAS  Google Scholar 

  72. Timofeyev, Yu.M., Nerobelov, G.M., Polyakov, A.V., and Virolainen, Ya.A., Satellite monitoring of the ozonosphere, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 12, pp. 849–855. https://doi.org/10.3103/S1068373921120062

    Article  Google Scholar 

  73. Tolmacheva, A.V., Bakhmetieva, N.V., Grigoriev, G.I., and Egerev, M.N., Turbopause range measured by the method of the artificial periodic irregularities, Adv. Space Res., 2019, vol. 64, no. 10, pp. 1968–1974. https://doi.org/10.1016/j.asr.2019.05.002

    Article  ADS  Google Scholar 

  74. Tsvetkova, N.D., Vargin, P.N., Luk’yanov, A.N., Kiryushov, B.M., Yushkov, V.A., and Khattatov, V.U., Studying chemical ozone depletion and dynamic processes in the Arctic stratosphere in the winter 2019/2020, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 9, pp. 606–615. https://doi.org/10.3103/S1068373921090065

    Article  Google Scholar 

  75. Vargin, P.N. and Kiryushov, B.M., Major sudden stratospheric warming in the Arctic in February 2018 and its impacts on the troposphere, mesosphere, and ozone layer, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 2, pp. 112–123.

    Article  Google Scholar 

  76. Vargin, P.N., Luk’yanov, A.N., and Kiryushov, B.M., Dynamic processes in the arctic stratosphere in the winter of 2018/2019, Russ. Meteorol. Hydrol., 2020a, vol. 45, no. 6, pp. 387–397.

    Article  Google Scholar 

  77. Vargin, P.N., Nikiforova, M.P., and Zvyagintsev, A.M., Variability of the Antarctic ozone anomaly in 2011–2018, Russ. Meteorol. Hydrol., 2020b, vol. 45, no. 2, pp. 63–73.

    Article  Google Scholar 

  78. Vargin, P.N., Kalinnikova, I.A., Kostrykin, S.V., and Volodin, E.M., Impact of sea surface temperature anomalies in the equatorial and North Pacific on the Arctic stratosphere according to the INMCM5 climate model simulations, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 1, pp. 1–9.

    Article  Google Scholar 

  79. Vargin, P.N., Kostrykin, S.V., Volodin, E.M., Pogoreltsev, A.I., and Wei, K., Arctic stratosphere circulation changes in the 21st century in simulations of INM CM5, Atmosphere, 2022a, vol. 13, p. 25. https://doi.org/10.3390/atmos13010025

    Article  ADS  CAS  Google Scholar 

  80. Vargin, P.N., Koval, A.V., and Guryanov, V.V., Arctic stratosphere dynamical processes in the winter 2021–2022, Atmosphere, 2022b, vol. 13, p. 1550. https://doi.org/10.3390/atmos13101550

    Article  ADS  Google Scholar 

  81. Veretenenko, S., Effects of solar proton events of January 2005 on the middle atmosphere dynamics in the Northern Hemisphere, Adv. Space Res., 2021a, vol. 68, no. 4, pp. 1814–1824. https://doi.org/10.1016/j.asr.2021.04.005

    Article  ADS  CAS  Google Scholar 

  82. Veretenenko, S.V., Effects of energetic solar proton events of solar cycle 23 on intensity of the stratospheric polar vortex, Geomagn. Aeron. (Engl. Transl.), 2021b, vol. 61, no. 7, pp. 985–992. https://doi.org/10.1134/S0016793221070227.

  83. Veretenenko, S., Stratospheric polar vortex as an important link between the lower atmosphere circulation and solar activity, Atmosphere, 2022a, vol. 13, no. 7, p. 1132. https://doi.org/10.3390/atmos13071132

    Article  ADS  CAS  Google Scholar 

  84. Veretenenko, S.V., Effects of solar proton events of January 2005 on the middle atmosphere circulation in the Southern Hemisphere, Geomagn. Aeron. (Engl. Transl.), 2022b, vol. 62, no. 7, pp. 924–931. https://doi.org/10.1134/S0016793222070180

  85. Veretenenko, S. and Ogurtsov, M., Manifestation and possible reasons of ~60-year oscillations in solar–atmospheric links, Adv. Space Res., 2019a, vol. 64, no. 1, pp. 104–116. https://doi.org/10.1016/j.asr.2019.03.022

    Article  ADS  Google Scholar 

  86. Veretenenko, S.V. and Ogurtsov, M.G., 60-year cycle in the Earth’s climate and dynamics of correlation links between solar activity and circulation of the lower atmosphere: New data, Geomagn. Aeron. (Engl. Transl.), 2019b, vol. 59, no. 7, pp. 908–917. https://doi.org/10.1134/S0016793219070260

  87. Veretenenko, S.V. and Ogurtsov, M.G., Influence of solar–geophysical factors on the state of the stratospheric polar vortex, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 7, pp. 974–981. https://doi.org/10.1134/S0016793220070282

  88. Yankovsky, V., Vorobeva, E., and Manuilova, R., New techniques for retrieving the [O(3P)], [O3] and [CO2] altitude profiles from dayglow oxygen emissions: Uncertainty analysis by the Monte Carlo method, Adv. Space Res., 2019, vol. 64, no. 10, pp. 1948–1967. https://doi.org/10.1016/j.asr.2019.07.020

    Article  ADS  CAS  Google Scholar 

  89. Zuev, V.V. and Savelieva, E., Arctic polar vortex splitting in early January: The role of Arctic sea ice loss, J. Atmos. Sol.-Terr. Phys., 2019a, vol. 195, p. 105137. https://doi.org/10.1016/j.jastp.2019.105137

    Article  Google Scholar 

  90. Zuev, V.V. and Savelieva, E., The cause of the strengthening of the Antarctic polar vortex during October–November periods, J. Atmos. Sol.-Terr. Phys., 2019b, vol. 190, pp. 1–5. https://doi.org/10.1016/j.jastp.2019.04.016

    Article  ADS  Google Scholar 

  91. Zuev, V.V., Borovko, I.V., Krupchatnikov, V.N., and Savelieva, E.S., Influence of the temperature of the lower subtropical stratosphere on Antarctic polar vortex dynamics, Atmos. Oceanic Opt., 2020, vol. 33, no. 5, pp. 708–711. https://doi.org/10.1134/S1024856020060160

    Article  ADS  Google Scholar 

  92. Zuev, V.V., Zueva, N.E., Savelieva, E.S., Korotkova, E.M., and Pavlinsky, A.V., The Role of large volcanic eruptions in stratospheric ozone depletion and degradation of coniferous forests, Atmos. Oceanic Opt., 2022a, vol. 35, no. 2, pp. 355–358. https://doi.org/10.1134/S1024856022040182

    Article  ADS  CAS  Google Scholar 

  93. Zuev, V.V., Savelieva, E.S., and Pavlinsky, A.V., Features of stratospheric polar vortex weakening prior to breakdown, Atmos. Oceanic Opt., 2022b, vol. 35, no. 1, pp. 183–186. https://doi.org/10.1134/S1024856022020142

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Krivolutsky.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Russian National Report. Meteorology and Atmospheric Sciences, 2019–2022. Edited by I.I. Mokhov and A.A. Krivolutsky. National Geophysical Committee, Russian Academy of Sciences, Moscow: MAKS Press, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivolutsky, A.A., Veretenenko, S.V. Russian Middle Atmosphere Research 2019–2022. Izv. Atmos. Ocean. Phys. 59 (Suppl 3), S340–S362 (2023). https://doi.org/10.1134/S0001433823150069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823150069

Keywords:

Navigation