Log in

Evolution of the Atmospheric Pressure Signal from the Tonga Volcano with Distance from It

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A model of propagation of an atmospheric pressure signal from the eruption of the Hunga Tonga−Hunga Haʻapai volcano is proposed. This model is used to explain some patterns in the change in the form of the observed signal with an increase in the distance from the volcano. It is based on the solution of the linearized Korteweg–de Vries (KdV) equation, which describes the change in the Lamb wave form as a function of the distance from a source. We compare the observed and model signals obtained as a superposition of the Lamb wave and acoustic modes calculated for three infrasound stations (IS22, IS24, and IS30). The energy of the volcanic eruption is estimated using the fluctuation amplitude of the atmospheric pressure and the characteristic duration of the signal recorded at the infrasound stations closest to the volcano.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. T. Kubota, T. Saito, and K. Nishida, “Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption,” Science 377 (6601), 91–94 (2022). https://doi.org/10.1126/science.abo4364

    Article  Google Scholar 

  2. S. N. Kulichkov, I. P. Chunchuzov, O. E. Popov, et al., “Acoustic–gravity Lamb waves from the eruption of the Hunga Tonga–Hunga Ha’apai volcano, its energy release and impact on aerosol concentrations and tsunami,” Pure Appl. Geophys. 179, 1533–1548 (2022). https://doi.org/10.1007/s00024-022-03046-4

    Article  Google Scholar 

  3. R. S. Matoza, D. Fee, J. D. Assink, et al., “Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga,” Science 377 (6601), 95–100 (2022). https://doi.org/10.1126/science.abo7063

    Article  Google Scholar 

  4. G. Dolgikh, S. Dolgikh, and V. Ovcharenko, “Initiation of infrasonic geosphere waves caused by explosive eruption of Hunga Tonga–Hunga Ha’apai volcano,” J. Mar. Sci. Eng. 10 (8), 1061 (2022). https://doi.org/10.3390/jmse10081061

    Article  Google Scholar 

  5. V. V. Adushkin, Yu. S. Rybnov, and A. A. Spivak, “Geophysical effects of the eruption of Hunga Tonga–Hunga Ha’apai volcano on January 15, 2022,” Dokl. Earth Sci. 504 (2), 362–367 (2022).

    Article  Google Scholar 

  6. C. L. Pekeris, “The propagation of a pressure pulse in the atmosphere,” Phys. Rev. 73, 145–154 (1948).

    Article  Google Scholar 

  7. A. D. Pierce and J. W. Posey, “Theory of excitation and propagation of Lamb’s atmospheric edge mode from nuclear explosions,” Geophys. J. R. Astron. Soc. 26, 341–368 (1971).

    Article  Google Scholar 

  8. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere (Elsevier, New York, 1975).

    Google Scholar 

  9. S. N. Kulichkov, “Propagation of atmospheric Lamb waves along the Earth’s surface,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 23 (12), 935–942 (1987).

    Google Scholar 

  10. S. N. Gurbatov and O. V. Rudenko, “Statistical phenomena,” in Nonlinear Acoustics, Ed. by M. F. Hamilton and D. T. Blackstock (Academic Press, New York, 1998), pp. 377–398.

    Google Scholar 

  11. D. Adam, “Tonga volcano eruption created puzzling ripples in Earth’s atmosphere,” Nature 601, 497 (2022). https://doi.org/10.1038/d41586-022-00127-1

    Article  Google Scholar 

  12. C. J. Wright, N. P. Hindley, M. J. Alexander, M. Barlow, L. Hoffmann, C. N. Mitchell, et al., “Tonga eruption triggered waves propagating globally from surface to edge of space,” Earth and Space Science Open Archive (ESSOAr) (2022). https://doi.org/10.1002/essoar.10510674.1

  13. M. Ern, L. Hoffmann, S. Rhode, and P. Preusse, “The mesoscale gravity wave response to the 2022 Tonga volcanic eruption: AIRS and MLS satellite observations and source backtracing,” Geophys. Res. Lett. 49, e2022GL098626 (2022). https://doi.org/10.1029/2022GL098626

  14. V. I. Karpman, Non-Linear Waves in Dispersive Media (Pergamon, 1975).

    Book  Google Scholar 

  15. F. Press and D. Harkrider, “Propagation of acoustic–gravity waves in the atmosphere,” J. Geophys. Res. 67 (10), 3889–3902 (1962).

    Article  Google Scholar 

  16. J. W. Posey and A. D. Pierce, “Estimation of nuclear explosion energies from microbarograph records,” Nature 232, 253 (1971).

    Article  Google Scholar 

  17. A. I. Zaitsev, E. N. Pelinovsky, G. I. Dolgikh, and S. G. Dolgikh, “Records of disturbances in the Sea of Japan caused by the eruption of Hunga Tonga–Hunga Ha’apai volcano on January 15, 2022, in the Tonga Archipelago,” Dokl. Earth Sci. 506 (2), 818–823 (2022).

    Article  Google Scholar 

  18. W. L. Donn and D. M. Shaw, “Exploring the atmosphere with nuclear explosions,” Rev. Geophys. 5, 53–82 (1967).

    Article  Google Scholar 

  19. H. Wexler and W. A. Hass, “Global atmospheric pressure effects of the October 30, 1961 explosion,” J. Geophys. Res. 67, 3875–3887 (1962).

    Article  Google Scholar 

  20. M. Wall, Tonga undersea volcano eruption released up to 18 megatons of energy, January 25, 2022. https://www. space.com/tonga-volcano-eruption-18-megatons#.

  21. J. S. Díaz and S. E. Rigby, “Energetic output of the 2022 Hunga Tonga–Hunga Ha’apai volcanic eruption from pressure measurements,” Shock Waves 32, 553–561 (2022). https://doi.org/10.1007/s00193-022-01092-4

    Article  Google Scholar 

  22. J. Vergoz, P. Hupe, C. Listowski, et al., “IMS observations of infrasound and acoustic–gravity waves produced by the January 2022 volcanic eruption of Hunga, Tonga: A global analysis,” Earth Planet. Sci. Lett. 591, 117639 (2022).

    Article  Google Scholar 

  23. K. V. Avilov, “Pseudo-differential parabolic equations of sound propagation in the slowly range-dependent ocean and their numerical solutions,” Acoust. Phys. 41 (1), 1–7 (1995).

    Google Scholar 

  24. D. Adam, “Tonga volcano eruption created puzzling ripples in Earth’s atmosphere,” Nature 601, 497 (2022). https://doi.org/10.1038/d41586-022-00127-1

Download references

ACKNOWLEDGMENTS

We are grateful to J. Šepic for providing the data on signals from the volcano (Institute of Oceanography and Fisheries (Croatia; http://faust.izor.hr/autodatapub/postaje2)).

Funding

This work was supported by the Russian Science Foundation, project no. 21-17-00021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Chunchuzov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chunchuzov, I.P., Kulichkov, S.N., Popov, O.E. et al. Evolution of the Atmospheric Pressure Signal from the Tonga Volcano with Distance from It. Izv. Atmos. Ocean. Phys. 59, 1–15 (2023). https://doi.org/10.1134/S0001433823010024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823010024

Keywords:

Navigation